alexa Loss Of Rubicon Increases Autophagic Flux And Protects Against Lipopolysaccharide-induced Cardiac Injury
ISSN: 2155-9880

Journal of Clinical & Experimental Cardiology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

4th International Conference on Clinical & Experimental Cardiology
April 14-16, 2014 Hilton San Antonio Airport, TX, USA

Hongxin Zhu
ScientificTracks Abstracts: J Clin Exp Cardiolog
DOI: 10.4172/2155-9880.S1.019
Abstract
Autophagy is required to maintain cardiac myocyte homeostasis. Cardiac autophagy is up-regulated in response to a variety of factors and enhanced autophagy in the heart can be either adaptive or maladaptive depending upon the context. Previous in vitro studies has shown that rubicon, a component of PI3KC3 complex, suppresses autophagosome/endosome maturation by sequestering UVRAG, which prevents Rab7 activation. We have recently demonstrated that UVRAG deficiency causes impairment of autophagic flux in the heart, leading to age-related cardiomyopathy and cardiac dysfunction accompanied by enhanced inflammation. In this study, we hypothesize that loss of rubicon increased autophagic flux in the heart and protected against sepsis-induced cardiac injury. Rubicon knockout mice were generated by insertion of PiggyBac construct into intron 1 of rubicon gene and loss of rubicon in various tissues were demonstrated by reverse transcription polymerase chain reaction (RT-PCR) and western blot. Rubicon deficiency increased autophagic flux without altering transcript expression of autophagy- related genes in the heart. At baseline, cardiac morphology and function were preserved in rubicon-deficient mice. To determine the effect of rubicon deficiency on inflammatory heart disease, we treated rubicon-deficient mice and corresponding wild type (WT) controls with lipopolysaccharide (LPS). Rubicon deficiency prolonged survival of LPS-treated mice. Quantitative RT- PCR revealed that LPS-induced expression of inflammatory cytokines was attenuated in rubicon-deficient hearts. Autophagy was further enhanced in the heart from rubicon-deficient mice compared with WT controls in response to LPS. In conclusion, Rubicon deficiency enhances cardiac autophagy and attenuates sepsis-induced cardiac injury.
Biography
Hongxin Zhu is an Associate Professor in Bio-X Institutes, Shanghai Jiao Tong University. He has completed his Ph.D. degree at the age of 29 from Fudan University and postdoctoral studies in UT Southwestern Medical Center at Dallas. He has been serving as an editorial board member of International Journal of Clinical Therapeutics and Diagnosis, and Journal of Biochemical and Pharmacological Research. He is a guest editor for the Journal of Medical Imaging and Health Informatics
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

c[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords