alexa Magnetic Properties In Multi-layer Ferrite Thin Films Via Spin-spray Deposition
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Expo on Ceramics and Composite Materials
June 26-27, 2017 Madrid, Spain

Hyoung Woo Yang and Woo-Sung Lee
Korea Electronics Technology Institute, South Korea
Posters & Accepted Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-071
Abstract
The progress in the electronics industry demands a number of new soft magnetic materials for inductive components in electronics. Recent developments of ferrites can fulfill the special requirements of electromagnetic interference (EMI) and near field communication (NFC) applications. Here, we have developed well-ordered multi-layer thin films with Mn-Zn ferrite and Ni- Zn ferrite on PI substrates by the spin-spray deposition method. Structure analysis indicates that the crystal structure of multi-layer ferrite thin film is spinel structure, which also has a columnar structure normal to the surface. The multi-layer ferrite thin films exhibit high permeabilities that exceed the Snoek limit for bulk Mn-Zn ferrite and Ni-Zn ferrite. Multi-layer ferrite thin films have relatively high permeability μ’ ~ 500 and μ” ~ 1 up to 50 MHz, and is promising to be used as thin film devices such as a magnetic applications. The spin-spray deposited Mn-Zn ferrite/Ni-Zn ferrite multi-layer heterostructures exhibiting high magnetic properties at both low and high frequencies provide great opportunities for fundamental studies and novel magnetic devices.
Biography

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords