alexa Magnetic Properties Of Artificially Frustarted Fe Nanoparticle Systems
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Exhibition on Materials Science & Engineering
October 06-08, 2014 Hilton San Antonio Airport, USA

Satyendra Prakash Pal and P Sen
Accepted Abstracts: Material Sci Eng
DOI: 10.4172/2169-0022.S1.017
Abstract
Frustration is evident in materials of common usage such as polymers, cholesteric liquid crystal systems, glassy and amorphous materials, due to their ability to co-exist in periodic and defected forms, as a scientific principle it has remained a strict theoretical concept, bound by equations of physics. We have been able to provide a form to frustration and the association of magnetic dynamics with frustration. We have prepared our superparamagnetic Fe nanoparticles, measuring about 7.5 nm across, by using a nonequilibrium process of electro-explosion of wires. Due to higher value of electron-phonon coupling for Fe, as electrons are unable to carry away sudden excess kinetic energy, disrupted lattice structure for the nanoparticles has been achieved. Thermoremanent magnetization experiments for Fe nanoparticles and their different nanocomposites with activated carbon performed by SQUID, provide spin relaxation dynamics and signify dissipation of stored magnetic energy by constituent assemblies. For the low temperature magnetic relaxation curves, exponential magnetic decay has been observed. This decay behaviour is ascribed to a dilute ensemble of superspins with random spatial distribution, anisotropy, and spin sizes. Due to positional atomic disorder established inside the Fe nanoparticle lattice, domains without boundaries are formed. This disorder is argued to generate large magnetic anisotropy regions, and demonstrated to be an important step for the oscillations to appear in the magnetic relaxation curves taken at higher tempertaures.
Biography
Satyendra Prakash Pal has completed his PhD at the age of 27 years from Jawaharlal Nehru University, New Delhi, India and currently is a postdoctoral research associate in Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, India. His research interst includes study of static and dynamic magnetic properties of artificially frustrated nanoparticle systems. Currently he is working on spin injection and universal conductance fluctuation (UCF) in metals.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords