alexa Mannose Analogue Decorated Lipidic Nanoparticles For Targeted Drug Delivery To Brain Glioma
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

4th International Conference on Nanotek & Expo
December 01-03, 2014 DoubleTree by Hilton Hotel San Francisco Airport, USA

Indu Singh, Rajan Swami, Wahid Khan and Ramakrishna Sistla
Accepted Abstracts: J Nanomed Nanotechnol
DOI: 10.4172/2157-7439.S1.019
Chemotherapy for brain glioma has been of limited value due to the inability of transport of drug across the blood-brain barrier (BBB) and poor penetration of drug into the tumor. For overcoming these hurdles, surface conjugated lipidic nanoparticles were developed with novel mannose derivative for targeting brain glioma. Lipidic nanoparticle were prepared by solvent emulsification and evaporation process and consequently characterized by various techniques like Differential scanning calorimetery (DSC), Dynamic light scattering (DLS). Drug loaded lipidic nanoparticles were surface modified with mannose derivative using carbodiimide coupling. Conjugation was confirmed using Infrared spectroscopy (IR). Drug encapsulation and in vitro release studies were carried out using HPLC. Conjugated lipidic nanoparticles were found to give sustain drug release as compared to drug solution. The targeting effects were evaluated on the glioma cell lines (U-87 MG). Cell toxicity assay were performed and results were encouraging with remarkable decrease in IC50 values as compared to drug encapsulated unconjugated lipidic nanoparticles and drug control and was further corroborated with cell uptake assay. Drug loaded mannose derivative-conjugated lipidic nanoparticles showed better IC50 and improved cell uptake. Hence, these conjugated lipidic nanopartiles are efficient delivery vehicle to target drugs to brain tumors.
Indu Singh has completed her MS from U.P Technical University, India. She was recipient of gold medal during her graduation as well as post graduation. Currently, she is a doctoral student in Department of Pharmaceutics, NIPER-Hyderabad, working under the mentorship and co-mentorship of Dr. Ramakrishna Sistla, Scientist E-II, CSIR-Indian Institute of Chemical Technology, Hyderabad, India and Dr. Wahid Khan, Assistant Professor, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, India respectively. She has been working on bioconjugated nanoparticles for brain tumors and other brain diseases like Alzheimers, Parkinson disease etc.
image PDF   |   image HTML
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version