Reach Us +44-1202-068036
Mapping Condition-specific Metabolomics Data Onto Network Reconstructions Generates Meaningful Dynamic Models | 8021
ISSN: 2153-0769

Metabolomics:Open Access
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Mapping condition-specific metabolomics data onto network reconstructions generates meaningful dynamic models

International Conference and Exhibition on Metabolomics & Systems Biology

Daniel Zielinski

Posters: J Comput Sci Syst Biol

DOI: 10.4172/0975-0851.S1.10

Genome-scale metabolic network reconstructions provide a context within which omics data can be analyzed to understand phenotypic functions. Here, we develop a workflow to integrate three disparate data types (metabolomic, fluxomic, and thermodynamic) within the context of a metabolic reconstruction. First we determine that the data sets are thermodynamically consistent. Then, we use the mass action stoichiometric simulation (MASS) model-building framework to develop three condition-specific kinetic models of E. coli core metabolism. The results from this study demonstrate: 1) that the MASS approach, that generates condition-specific rate constants based on in vivo data, can generate network-scale dynamic models in a data-driven manner, 2) that the MASS models generated under many conditions have underlying dynamic similarities, and 3) that this structured and integrated omics data analysis yields consistent physiological results from data that otherwise would be treated as a series of independent measurements. The impending onslaught of quantitative in vivo metabolomics data can thus be converted into useful dynamic models in a data-driven fashion to generate descriptions of integrated network functions.
Leave Your Message 24x7