alexa Maximum-profit Production-inventory System With Stock-dependent Demand, Variable Holding Cost, And Purchase Cost Discounts
ISSN: 2169-0316

Industrial Engineering & Management
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

International Summit on Industrial Engineering
December 08-10, 2014 DoubleTree by Hilton Hotel San Francisco Airport, USA

Hesham K Al-Fares
ScientificTracks Abstracts: Ind Eng Manage
DOI: 10.4172/2169-0316.S1.002
Abstract
This paper presents two types of production-inventory systems with stock-level-dependent demand, time-dependent holding cost, and order size-dependent purchase cost. By incorporating these and other unique and realistic considerations, the two systems eliminate several shortcomings of traditional production-inventory systems such as the economic production quantity (EPQ) model. In general, traditional models assume a constant demand rate, a constant unit holding cost, and a constant unit purchase cost. Moreover, traditional models usually aim to minimize the total cost, and they assume the starting and ending inventory levels to be zero. In the systems proposed in this paper, the simplifications and limitations of traditional models are replaced by applicable and realistic assumptions. First, the demand rate is assumed to be an increasing power function of the instantaneous inventory level. Second, the unit holding cost is assumed to be an increasing step function of the storage duration. Third, the unit purchase cost is assumed to be a decreasing step function of the production lot size. An allunits quantity discount scheme is assumed, in which the discounted price applies to all the units in the production lot. Fourth, the objective of the system is to increase the overall profit. Since the demand is not constant, the revenue is not constant, and therefore minimizing the cost is not equivalent to maximizing the profit. Finally, the starting/ending inventory level is assumed to be a decision variable whose value is optimally determined by the model. Clearly, a higher starting/ending inventory level increases the holding cost, but leads to higher demand and greater revenue. The model determines the optimum value of the starting/ending inventory level that provides the best cost-benefit balance and leads to the maximum profit. Two types of holding cost increase with longer storage durations are considered: retroactive and incremental. Retroactive increase means the (highest) holding cost of the latest storage time interval applies to all storage periods. Incremental increase means that a different holding cost is applied to each storage time interval. For each of the two types, a mathematical optimization model is formulated, and an efficient, nonlinear programming-based, technique is developed to find the optimum solution.
Biography
Hesham K Al fares is a professor in the Systems Engineering Department at King Fahd University of Petroleum & Minerals, in Dhahran, Saudi Arabia. He obtained a BS in electrical & Computer Engineering from the University of California, Santa Barbara, an MS in Industrial Engineering from the University of Pittsburgh, and a PhD in Industrial Engineering from Arizona State University.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords