alexa Membrane-based Dewatering Processes Using FO And MD For Nitrogen Recovery From Wastewater
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

4th World Congress and Expo on Recycling
July 27-29, 2017 | Rome, Italy

Hyokwan Bae, Dawoon Jeong, Lat Lat Tun, Seongpil Jeong, Kyungjin Cho and Seockheon Lee
Pusan National University, South Korea
Korea Institute of Science and Technology, South Korea
Yangon Technological University, Myanmar
ScientificTracks Abstracts: Int J Waste Resour
DOI: 10.4172/2252-5211-C1-005
Abstract
Forward osmosis (FO) and biological nitrification processes were integrated in this study. High strength ammonia wastewater of 2500 mg-N/L was partially nitrified at an ammonia conversion rate of 1.34±0.25 kg-N/m3-day under the limitation of an acidification buffer, i.e., HCO3–-C/NH4+-N = 1, as a control factor. To mitigate the membrane fouling, direct contact between the biomass and cellulose triacetate FO membrane was avoided by employing PVA/alginate-immobilized nitrifiers in the bioreactor. The simultaneous FO process concentrated the wastewater at concentration factors (CFs) of up to 2.34 during the partial nitritation (PN) reaction. As a result, the concentration of total dissolved solids (TDS) ranged from 13.6 g/L to 35.7 g/L. It was found that salinity higher than 17 g-TDS/L inhibited the activity of the nitrite-oxidizing bacteria, but not the ammonia-oxidizing bacteria. Then, the nitrogen content of wastewater was further concentrated using direct contact membrane distillation (DCMD). The ratio of transferred ammonia to water (i.e., specific ammonia transfer: SAT) was controlled by operational conditions of membrane materials, pH and temperature. It was identified that free ammonia (FA) concentration has a critical role on SAT values under different total ammoniacal nitrogen concentration and pH. Thus, the acidification pretreatment was essential to minimize the FA concentration in the feed before operating the DCMD system. Taken together, membrane-based dewatering processes were effective to reduce the water contents in the wastewater and the remained nitrogen contents can be utilized as a concentrated fertilizer.
Biography

Hyokwan Bae has been working at Korea Institute of Science and Technology as a Research Scientist for 11 years (2006-2017). He participated in a number of research projects on nitrogen removal, membrane separation, biofilm and culture-independent analysis of bacterial community structure. After obtaining a PhD degree in Interdisciplinary Program of Bioengineering at Seoul National University in early 2014, his research has been concentrated on the integration of biological reaction and membrane separation processes linked to obtaining high quality reclaimed water and resource recovery (e.g., partial nitrification, halophilic bacteria, forward osmosis, membrane distillation and fouling control). Recently, he joined the Faculty of Pusan National University in 2017 to broaden and improve his specialty in Civil and Environmental Engineering.

Email: [email protected]

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords