alexa Metal Homeostasis And Infectious Disease: Siderophore-based Strategies To Inhibit Growth Of Bacterial Pathogens
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

CO-ORGANIZED EVENT: International Conference on Chronic Diseases & 6th International Conference on Microbial Physiology and Genomics
August 31-September 01, 2017 Brussels, Belgium

Elizabeth M Nolan
Massachusetts Institute of Technology, USA
Keynote: J Microb Biochem Technol
DOI: 10.4172/1948-5948-C1-027
Abstract
New strategies to treat bacterial infections and counteract the emergence of antibiotic resistance are needed. Metal ions are essential nutrients for all organisms, and almost all bacterial pathogens have a metabolic iron requirement. Thus, these microbes must acquire iron from the mammalian host to replicate and cause disease. Many bacteria biosynthesize and utilize siderophores, secondary metabolites that coordinate iron(III) with high affinity, to scavenge iron from the host. The proteins required for the biosynthesis and transport of these iron-chelating metabolites are expressed under iron-limited conditions. Siderophores are considered to be virulence factors and the notion of employing siderophore and siderophore mimics, as well as targeting siderophore biosynthesis and transport machineries, has attracted significant interest for antibiotic development over many years. Here, we first present vignettes from our studies of siderophore-mediated targeting of small molecule antibiotics to Gram-negative bacteria. We report that siderophore-antibiotic conjugates based on native siderophore platforms allow broadspectrum antibiotics like β-lactams to be targeted to specific bacterial populations, particularly Gram-negative pathogens, on the basis of siderophore receptor expression. For instance, salmochelin-antibiotic conjugates kill Escherchia coli that express the salmochelin receptor iron, including uropathogenic strains, but not E. coli that lack this receptor. In a related thrust, we describe our recent efforts to block iron acquisition by gastrointestinal pathogens using siderophore-based immunization. We report that immunization of mice with CTB-Ent, a conjugate of cholera toxin subunit B and the siderophore enterobactin is well-tolerated, results in generation of anti-siderophore antibodies in the gut, and provides protection against Salmonella enterica serovar Typhimurium in a mouse model of infection. Together, these fundamental studies support the notion that hijacking siderophore uptake pathways and blocking siderophore-based iron acquisition may provide new opportunities for new strategies to prevent and treat infectious diseases.
Biography

Elizabeth M Nolan is an Associate Professor of Chemistry at the Massachusetts Institute of Technology. Her current research interests address the bioinorganic chemistry of infectious disease and the host-microbe interaction, and include investigations of metal homeostasis, host-defense factors, and bacterial metabolites.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords