alexa Microgrid Energy Storage Using Lithium-Sulfur Batteries: Feasibility Of Solvent-in-salt Electrolytes
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd International Conference on Battery and Fuel Cell Technology
July 27-28, 2017 | Rome, Italy

Ashley Brew
OXIS Energy Ltd, UK
ScientificTracks Abstracts: J Fundam Renewable Energy Appl
DOI: 10.4172/2090-4541-C1-035
Abstract
Lithium-Sulfur (Li-S) batteries are considered one of the most promising technologies that could provide a generational leap in terms of energy density over current lithium ion batteries. OXIS Energy have demonstrated this by succeeding in developing Li-S batteries at 400Wh/kg. However, capacity fade at such high energy density is rapid and further research and development is needed to alleviate this. Many factors contribute to capacity fade in Li-S batteries: for example, dissolution and loss of cathode material, consumption of the electrolyte due to its reaction with lithium metal and electrical isolation of insulating sulfur and Li2S charge and discharge products. Another major issue in Li-S batteries is the ‘polysulfide shuttle’, in which reaction intermediates shuttle between the cathode and anode during charge. So-called solvent-in-salt (SIS) electrolytes are those in which the salt exceeds the solvent either by weight, by volume, or both. These unique electrolytes have demonstrated interesting properties in the literature and may solve many of the problems outlined above. SIS electrolytes inhibit intermediate dissolution due to the common ion effect, thus reducing active material loss and inhibiting the polysulfide shuttle. SIS electrolytes have also demonstrated improved lithium plating due to the high lithium-ion transference number, leading to lower rates of electrolyte depletion. These combinations of factors have resulted in these electrolytes exhibiting excellent cycle stability and coulombic efficiency in literature studies. Here we will present our work developing this type of electrolyte for R&D pouch cells and their possible use in microgrid energy storage applications.
Biography

Ashley Brew gained his MSc in Catalysis and PhD in Electrocatalysis from Cardiff University, specializing in the oxygen reduction reaction in fuel cells. After a few post-doctoral positions in the fields of EPR spectroscopy and thermoelectric materials, he now works at OXIS Energy, a leading developer of lithium-sulfur battery chemistry. As a research scientist at OXIS, Ashley is a member of the electrolyte research group and is currently nearing the end of a 12-month project that aims to establish the feasibility of novel electrolytes for microgrid applications. OXIS Energy also develop lithium-sulfur secondary batteries for several other applications, including automotive and aerospace.

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords