alexa MicroRNA 23a~27a~24-2 Cluster Regulation Of Bone Formation | 17654
ISSN: 2161-0533

Orthopedic & Muscular System: Current Research
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

3rd International Conference and Exhibition on Orthopedics & Rheumatology

Mohammad Hassan
ScientificTracks Abstracts: Orthop Muscul Syst
DOI: 10.4172/2161-0533.S1.016
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs of ~22 nucleotides which repress gene expression to provide a refined level of gene regulation in a broad spectrum of biological processes and disease. Inhibition of mRNA stability or the translation by miRNAs has emerged as a key developmental switch for the commitment of mesenchymal cells to the osteoblast lineage, growth, and differentiation and post natal bone homeostasis in the adult skeleton. In this study it was identified a cluster of 3 microRNAs (miR-23a, 27a and 24-2) from preosteoblast MC3T3-E1 cells, located on mouse chromosome 8, that inhibits osteogenesis by targeting SATB2 and Runx2. Current understanding of this emerging concept of bone-regulating miRNAs is lacking in vivo mouse genetic studies of their function. To fill in this gap of knowledge a miR-23a~27a~24-2 cluster knockout (PuroΔTK) and a knockdown (TRE-MIRZIP) mouse model was created. Heterozygous knockout mouse has developed a high bone mass phenotype. It has been seen that miR-cluster promotes growth of preosteoblasts by controlling RB1 phosphorylation, cMYC induction and activated Wnt signaling. Similar to our findings, metastatic osteosarcoma cell line have demonstrated a significantly higher level miR-23a, and 27a expression. Immunoprecipitation of the miR cluster-induced silencing complex (RISC) aided in the identification of several HoxA class factors (HoxA5, A10 & A11) as potential targets to inhibit in vitro differentiation. These RNP-IP studies also discovered several key chromatin remodeling factors all involved in stage and tissue specific epigenetic regulation. When taken together, our findings lead us to conclude that miR cluster -23a~27a~24-2 controls osteoblast growth, differentiation and post natal bone homeostasis. The studies will significantly add to the current understanding of the novel role of miR-cluster function to regulate bone formation and could translate to potential therapeutics for bone regeneration, skeletal disorders and osteosarcoma
Biography
Mohammad Hassan obtained his PhD from Indian Institute of Chemical Biology, Kolkata, India, in gene expression of protozoan parasites and then carried out postdoctoral research at the University of Massachusetts Medical School, Worcester, USA. He is currently an assistant professor in the department of Oral and Maxillofacial Surgery, School of Dentistry at the University of Alabama, Birmingham, USA. He discovered several key mechanisms of miRNA function in bone formation and homeostasis. His lab is currently focused to study the in vivo regulation of miR-23a~27a~24-2 cluster in bone and craniofacial tissue formation. He is well recognized in the field of bone biology and serves the editorial board of several basic and bone biology journals.
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7