alexa Molecular Basis Of Maize Differential Resistance To Herbicides | 15617
ISSN: 2168-9881

Agrotechnology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

2nd International Conference on Agricultural & Horticultural Sciences

Agata Tyczewska
ScientificTracks Abstracts: Agrotechnol
DOI: 10.4172/2168-9881.S1.007
Abstract
Herbicides, commonly known as weedkillers, are compounds used to destroy or inhibit the growth of plants, especially weeds. The most popular weedkillers, widely used in the maize fields, are nonselective, which means that they affect not only weed populations but influence all plants that are growing in the sprayed area. Organisms constantly exposed to environmental stimuli establish mechanisms of protection and adaptation and because of sedentary lifestyle they require efficient short-term strategies. Therefore to guarantee their survival under adverse conditions, plants have developed exquisite adjustments to stresses at all levels (anatomical, morphological, cellular, biochemical and molecular). Years ago it has been observed that some maize lines show higher sensitivity to herbicide spraying than others but molecules determining such heightened resistance remains unknown to this day. Therefore our goal is to identify molecular basis of plants increased/decreased resistance to herbicides and identify a molecular marker that can be used as an indicator of plants resistance to herbicides. First, we chose two maize lines that differ significantly in susceptibility to herbicide RoundUp, then analyzed gene expression (microarrays) and alternative splicing events (NGS) and identified hundreds of genes with changed expression profiles between tested lines. We also detected differences in small RNA populations and identified several new microRNA candidates (NGS). Since it was recently shown that abiotic stresses cause long-term regulation of gene expression, mostly conferred by epigenetic gene regulatory mechanisms we decided to track changes in epigenome. Using MSAP we identified more than a hundred sequences that show different methylation profiles.
Biography

Agata Tyczewska completed her Ph.D. from Institute of Bioorganic Chemistry PAS in Poznań, Poland in 2008 where she was working on the identification of human Dicer inhibitors. She then joined Matzke Lab at Gregor Mendel Institute of Plant Molecular Biology in Vienna, Austria where she spent nearly two years working as a postdoc on RNA-directed DNA methylation. After her return to Poznań in 2011 she became interested in herbicide resistance in maize varieties. She received a patent from Polish Patent Office, is a co-author of several patent applications and published 14 papers (experimental and review) in reputed journals.

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7