alexa Nanocrystalline Cellulose From Abaca Fibers
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Anniver Ryan P Lapuz, Adela S Torres, Rebecca B Lapuz, Erlinda L Mari and Blessie A Basilia
Forest Products Research and Development Institute, Philippines
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Nanocellulose is an emerging nanomaterial that is sustainable, renewable, biodegradable and biocompatible. This material can be used for health and green composites applications such as reinforcement materials for high performance nanocomposites, pharmaceutical, chemical and food additives, optically reflective films, high durability varnishes and innovative bio-plastics. Abaca or Manila hemp is one of the most abundant endemic lignocellulosic agro-based fibres in the Philippines which can be an excellent source of nanocellulose. At present, its applications are still limited to cordages, textile, and handicrafts. This study aims to determine the characteristics of nanocrystalline cellulose (NCC) extracted from a disease resistant hybrid variety of abaca fibre that can be used as reinforcement fillers in composite applications. Hybrid abaca fibers were soda pulped and subsequently bleached using HEHEH sequence. Chemical properties of bleached hybrid abaca pulp were comparable with commercial abaca varieties. Different hydrolysis conditions were used to extract NCC from bleached abaca pulp. Acid hydrolysis at 64% sulfuric acid concentration showed that almost all the cellulose has been degraded as observed from the low yield in solid suspension and a brown to dark brown coloration at different reaction time. In contrast, a white cloudy suspension was observed at lower acid concentrations. Chemical and physical processes were conducted to isolate the nanocrystalline cellulose of different acid concentrations acid resulting in a hazy white solution. Among the various acid concentrations, a particle size distribution profile of 23.38 nm using dynamic light scattering technique (Figure 1) was observed from the hydrolysis of abaca pulp at 55% acid concentration reacted for 60 minutes. In addition, a 15% NCC yield with a 0.4% NCC concentration was obtained from the hydrolysis of abaca pulp.

Anniver Ryan P Lapuz is a Materials Science and Chemical Engineer. His topic of interest is to explore the potential of nanocellulose from locally abundant agrolignocellulosic materials. His researches on green composites such as fiber reinforced thermoplastic starch as substitute for single use packaging would further be enhanced using nanotechnology to improve its mechanical and physical properties. His current studies include reinforced thermoplastic starch (TPS) used for thin film and expanded TPS applications.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version