alexa Neuro-mechanics Of Hydrocephalus
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

2nd International Conference and Exhibition on Mechanical & Aerospace Engineering
September 08-10, 2014 Philadelphia, USA

Corina S Drapaca
ScientificTracks Abstracts: J Aeronaut Aerospace Eng
DOI: 10.4172/2168-9792.S1.002
Abstract
Hydrocephalus is a serious neurological disease caused by an interruption to the normal flow of the cerebrospinal fluid (CSF) inside the brain, resulting in an excessive accumulation of CSF in the brain?s ventricles, brain compression and sometimes an increase in the intracranial pressure. The treatment is surgical in nature and continues to have poor outcomes. An important step in the design of better therapy protocols for hydrocephalus is the development of predictive mathematical models that better explain the fundamental science behind this clinical condition. In this talk, the author will review some mathematical models of brain neuro-mechanics and corresponding numerical solvers that the author and her collaborators developed for predicting the onset and evolution of hydrocephalus. More precisely, author will present the following results: 1). A quasi-linear viscoelastic constitutive law for brain tissue can predict treatment outcomes similar to reported clinical data; 2). A non-linear hyper-elastic constitutive law for the brain tissue indicates that once a threshold for the intracranial pressure is reached the natural pulsations of brain could contribute to the development of hydrocephalus; 3). A triphasic model of the brain tissue suggests that normal pressure hydrocephalus could be caused by an imbalance in the salt concentration in the absence of an elevated intracranial pressure; 4). A fluid-structure interaction approach using the immersed finite element method shows that the CSF viscosity could play an essential role in treatment outcomes.
Biography
Corina S Drapaca is an Assistant Professor in the Department of Engineering Science and Mechanics at Pennsylvania State University since fall 2007. She has received her PhD degree in Applied Mathematics from the University of Waterloo, Canada, in 2002 and held post-doctoral fellowships in the Department of Radiology, University of California, San Francisco, the Department of Applied Mathematics, University of Waterloo, and the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester. She is a specialist in theoretical and computational mechanics, medical image analysis, and has particular interest in modeling brain diseases such as hydrocephalus, Chiari malformations, and brain tumors.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords