alexa Nitrogen-doped Porous Activated Carbon Monolith Derived From Polymer For Ultrahigh-CO2 Adsorption Capacity And CO2/N2 Selectivity

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

6th International Conference on Petroleum Engineering
June 29-30, 2017|Madrid, Spain

Alabadi Akram
Huazhong University of Science & Technology, China
Posters & Accepted Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463-C1-032
Hierarchical porous carbon (HPC) monolithic with 3D network has received considerable attention due to their potentially technological application as candidates for electrochemical energy storage devices such as capacitors, lithium ion batteries, solar cells, sorbent for toxic gas separation and greenhouse gas capture for their well-defined pore dimensions and topologies. Synthetic polymer based hierarchical nanostructured carbons are particularly attractive for their consistent pore dimensions which can be adjustable on long length scales, so that diffusibility of guest species could be improved through its unique hierarchical pores. N-doped HPC monoliths exhibit multifaceted features such as tunable textural properties, excellent thermal and chemical stability, which are remarkable physicochemical properties that are answerable for micro/nanostructured porous carbons perfect candidates for emerging substrates in nanotechnology science. A two-step synthetic method has been developed to achieve functionalized nanoporous carbons via cross-linked polymer precursors, which are prepared by Friedel-craft alkylation and pyrolysis. Nitrogendoping proves to be an effective method for reinforcing the CO2 adsorption capacity of carbon-based adsorbents, although it remains a great challenge to reach a fit doping level of nitrogen (N) and a high porosity in a porous carbon simultaneously. Herein, a facile method that enables the fabrication of ordered microporous nitrogen-doped porous carbon monolith with a content of 4.6 wt% N, employs poly (H-BINAM) as precursor; through chemical activation, high microporosity is generated and gives birth to a monolithic structured porous nitrogen-doped carbon. This material exhibits a remarkable CO2 adsorption capacity (6.74 mmol g-1 at 273 K and 4.27 mmol g-1 at 298 K under 1 bar), and an extraordinarily excellent CO2/N2 selectivity (153), which is calculated from the singlecomponent adsorption isotherms based on Henry’s Law. This value exceeds the CO2/N2 selectivity of thus mentioned for carbonbased adsorbents including diverse nitrogen doped ones, whose attributes are largely associated with the unusually high N-content as well as the partial graphitic framework.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version