alexa Non-equilibrium Modelling Of Simulated Moving Bed Processes For Separation Of Xylenes In Petrochemical Industry | 21415
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

2nd World Congress on Petrochemistry and Chemical Engineering
October 27-29, 2014 Embassy Suites Las Vegas, USA

Ahmet R Ozdural
ScientificTracks Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463.S1.006
Abstract
Industrial adsorptive separation processes have been largely employed for separations in the petrochemical industry. Conventional fixed bed adsorption desorptionseparationis a batch process. As opposed to conventional adsorptive separations, continuous adsorptive separation processes, presents advantages in terms of productivity. Simulated Moving Bed (SMB) technology is a highly selective adsorption desorption process of continuous separation which is often employed in the separation of complex mixtures.This technology has been applied over four decades in the petrochemical industry and currently enjoying preparative an production scale separation of sugars, proteins, pharmaceuticals, fine chemicals, flavorings, foods and enantiomers. This work focuses on mathematical modeling and simulation of SMB systems to be used for xylene isomers separation, which is extensively used in petrochemical industries. Production of polyester fibers and polyethylene terephthalate are the main examples. The operation methodology of SMB is highly complex in nature. Therefore, generally, a model-based control scheme is used so as to obtain a stable operation and better understood SMB process. A great deal of theoretical work has been carried out for developing useful simulation procedures for design and process development purposes. There are several models to be used for adsorptive separations whether it is at the analytical scale or at the preparative/ production scale. The ideal model, the equilibrium dispersive model, the transport dispersive model and the general rate (GR) model, which may be also called non-equilibrium model, are the main examples. The GR model is widely acknowledged as being the most comprehensive among such models available in the literature as it accounts for axial dispersion and all the mass transfer resistances, e.g., external mass transfer of solute molecules from bulk phase to the external surface of the adsorbent, diffusion of the solute molecules through the particle, and adsorption-desorption processes on the site of the particles. The solution of the GR model based SMB governing equations involves the employment of advanced numerical techniques. The solution algorithm usually employs linear adsorption isotherm conditions. This is largely due to the highly complex nature of the resulting equations whennon-linear adsorption isotherms integrated into SMB modeling studies. ?zdural et al. proposed a new algorithm for the numerical solution of non-equilibrium packed-bed adsorption with non-linear adsorption isotherms. Contrary to the generally employed practices, this methodology is not governed by the solution of coupled partial differential equations.The number of partial differential equations to be solved reduces to one. In the present study this technique is extended to SMB systems and applied to Langmuir type nonlinear adsorption isotherm model for xylenes. The solution of the present model predicts the concentration profiles of the components along the columns. For separation of xylenes in petrochemical industry, the present non-equilibrium modelling of SMB under non-linear adsorption isotherms allows a strong perspective and facilitates scale-up procedures.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version