alexa Optimization Of Process Parameters For Spark Plasma Sintering Of Nano-structured UNS 32205 Composite | 63651
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

3rd International Conference on Smart Materials & Structures
March 20-22, 2017 Orlando, USA

Oke Samuel Ranti, Ige O O, Mphahlele M R, Falodun E O and Olubambi P A
University of Johannesburg, South Africa
Posters & Accepted Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022.C1.062
Abstract
Statement of the Problem: Conventional Duplex Stainless Steel (DSS, grade UNS 32205) used in applications pose many unsolved problems; among them are, degradation of mechanical properties at high temperatures, poor resistance to creep and fatigue. Attempts to solve these problems have involved dispersing second phase particles into DSS matrix grain. Powder metallurgy route have been used to fabricate dispersion strengthened DSS but the challenge to obtain fully dense composites and avoid grain growth with nano particles is of great importance and could be carefully resolved by appropriate selection of sintering process parameters. Spark plasma sintering (SPS) have attracted attention due to its low energy consumption and short sintering time. Several works have been reported on the SPS of stainless steel based composites but nano particle dispersion strengthening of DSS has received little attention from researchers. This research seek to optimize process parameters to develop nano structured DSS with varying nanoTiN additions via spark plasma sintering (SPS). Methodology & Theoretical Orientation: Automated spark plasma sintering machine (model HHPD-25, FCT GmbH Germany) was used to fabricate the composites. Characterization was performed using X-ray diffraction and Scanning Electron Microscopy. Density, hardness and wear properties of the composites were investigated. Findings: The XRD results indicated that FeN0.068 was formed. The SEM/EDS confirmed the presence of nano ranged particles of TiN evenly distributed at the grain boundaries of DSS matrix. The results obtained indicated that the optimum properties were obtained at sintering temperature of 1150 °C, holding time 10 minutes and heating rate of 100oC/min. Densities of the 2205 DSS-TiN composites increased with sintering temperature but decrease with the TiN content. Nano-hardness of the 2205 DSS-TiN composite is enhanced by diffusion and reaction of Fe and N at the grain boundaries. The addition of TiN increases the elastic modulus of the composites. Conclusion & Significance: The properties and microstructure of the sintered composites largely depend on the SPS process parameters and nanoTiN additions.
Biography

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version