alexa Oscillatory Protein Expression Dynamics Generates Robust And Irreversible Differentiation Of Stem Cells
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference on Tissue Science & Regenerative Medicine
September 24-26, 2014 Valencia Convention Centre, Spain

Chikara Furusawa
ScientificTracks Abstracts: J Tissue Sci Eng
DOI: 10.4172/2157-7552.S1.014
Abstract
A systems-level understanding of cell differentiation is important for developmental biology. Some of the basic questions concerning such systems-level understanding include: What characteristics in a cellular state distinguish multi-potent stem cells from differentiated cells? How are developmental processes robust to molecular noise in spite of their complexity? Following the progress in the analysis of molecular mechanisms for cell differentiations, the time is ripe to answer the above questions to unveil nature of differentiation from stem cells. In this study, using a dynamical system modeling, we performed simulations of the developmental process using small gene regulatory networks, and screened those that could generate cell type diversity through cell-cell interactions. We found that stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Based on the result of computer simulations, we propose a hypothesis for the mechanism of stem cell differentiation, in which the expression levels of some genes in multipotent stem cells exhibit temporal oscillation, and itinerate over several sub-states. As development progresses, each of these quasi-stable sub-states is modified and stabilized, leading to differentiated cell types. Importantly, this hypothesis can explain the roles and mechanism of the recently observed dynamic heterogeneity and oscillatory behavior in cellular states of stem cells, and it can predict the regulatory motifs responsible for the dynamic differentiation process. These discussions promote a system-level understanding of multicellular development and provide a basis for clinical application of stem cells.
Biography
Chikara Furusawa has completed his PhD at the age of 28 years from University of Tokyo and postdoctoral studies from Center of Developmental Biology, RIKEN. He is a team reader at Quantitative Biology Center, RIKEN. He has published more than 60 papers in reputed journals
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords