alexa Paracrine Action Of Human Mesenchymal Stem Cells For Muscle Diseases
ISSN: 2157-7412

Journal of Genetic Syndromes & Gene Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd World Congress on Rare Diseases and Orphan Drugs
June 29-30, 2017 London, UK

Jong Wook Chang
Samsung Medical Center, South Korea
ScientificTracks Abstracts: J Genet Syndr Gene Ther
DOI: 10.4172/2157-7412-C1-012
The role of Wharton’s jelly-derived human mesenchymal stem cells (WJ-MSCs) in inhibiting muscle cell death has been elucidated in the present study. Apoptosis induced by serum-deprivation in mouse myoblast cell lines (C2C12) was significantly reduced when the cell lines were co-cultured with WJ-MSCs in a transwell system. Antibody arrays indicated high levels of chemokine (C motif) ligand (XCL1) secretion by co-cultured WJ-MSCs and XCL1 protein treatment resulted in complete inhibition of apoptosis in serum-starved C2C12 cells. Apoptosis of C2C12 cells and loss of differentiated C2C12 myotubes induced by lovastatin, another muscle cell death inducer, was also inhibited by XCL1 treatment. However, XCL1 treatment did not inhibit apoptosis of cell lines other than C2C12. When XCL1-siRNA pretreated WJ-MSCs were co-cultured with serum-starved C2C12 cells, apoptosis was not inhibited, thus confirming that XCL1 is a key factor in preventing C2C12 cell apoptosis. We demonstrated the therapeutic effect of XCL1 on the zebrafish myopathy model, generated by knock down of a causative gene ADSSL1 encoding a muscle isozyme of adenylosuccinate synthase. The exogenous expression of XCL1 resulted in significant recovery of the zebrafish skeletal muscle defects. These results suggest that human WJ-MSCs and XCL1 protein may act as pro-mixing and novel therapeutic agents for treatment of myopathies and other skeletal muscle diseases.

Jong Wook Chang has his expertise in Translational and Clinical Research of stem cells for neurological diseases including CNS and PNS. Especially, he has made effort to identify soluble factors secreted from human mesenchymal stem cells (MSC) to understand therapeutic effect of MSC. In addition, now he is responsible for management of cGMP facility in Samsung Medical Center to produce clinical grade of MSC for clinical trials.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version