alexa Patient Specific Reconstruction Of Skeletal Defects In The Maxillo-facial Region Using Magnesium Implants Produced With Selective Laser Melting (SLM) Technique- An In Vitro Study
ISSN: 2153-0645

Journal of Pharmacogenomics & Pharmacoproteomics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd International Conference on Predictive, Preventive and Personalized Medicine & Molecular Diagnostics
November 03-05, 2014 Embassy Suites Las Vegas, USA

Julia Matena, Matthias Gieseke, Andreas Kampmann, Svea Petersen, Michael Teske, Hugo Murua Escobar, Nils-Claudius Gellrich, Heinz Haferkamp and Ingo Nolte
ScientificTracks Abstracts: J Pharmacogenomics Pharmacoproteomics
DOI: 10.4172/2153-0645.S1.002
Skeletal critical size defects can occur due to tumor resections, infections or trauma. Autologous bone grafts are still the gold standard for the reconstruction of skeletal defects, having an excellent combination of osteoconduction, osteoinduction and osteogenesis properties. However, the use of autologous bone grafts has certain limitations, since their use requires surgical procedure for harvest, the amount and size is limited and is associated with donor site morbidities. Because every skeletal defect has a unique form, any implant that is created to fill the defect has to be patient specific. Rapid manufacturing methods are a favorable possibility to overcome this problem. In our study we combined the principles of rapid manufacturing with a degradable implant material having good mechanical properties. Recently the production of magnesium structure using Selective Laser Melting (SLM) could be established. This material has the potential to create a patient specific, absorbable implant that meets physiological requirements. Especially in critical size defects an early and fast vascularization of implants is of great importance. Porous scaffolds enable vessel in growth and thus support bone ingrowth. Using SLM technique interconnected pores of the implant can be produced. To control the degradation of absorbable magnesium implants we examined different polymer coatings. Primary osteoblasts and mesenchymal stem cells, as cell with vital importance for vascularization and bone growth, were seeded on these different coatings and analyzed by means of proliferation and viability assays. To support angiogenesis proangiogenic factors were incorporated into the polymers and examined. We used live cell imaging to follow osteoblasts and mesenchymal stem cells seeded on the SLM produced magnesium constructs coated with polymers for seven days to show cell morphology and migration. Osteoblasts showed a flattened cell shape even one week after seeding. Next steps are in vivo tests to examine osseointegration and angiogenesis.
Julia Matena has completed her studies of veterinary medicine at the age of 25 from University of Veterinary Medicine, Foundation, Hanover. Now she is PhD student at Small Animal Clinic, University of Veterinary Medicine, Foundation, Hanover. She participates in research training group ?biomedical engineering?, sfb 599.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version