alexa PGlcNAc Nanofibers Derived From A Marine Polymer Stimulate Regenerative Wound Repair Via Activation Of A TLR4/type-I IFN Pathway In Combination With An Integrin/Akt1 Dependent Pathway | 72602
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Joint Conference:3rd International Conference & Exhibition on TISSUE PRESERVATION AND BIOBANKING & 6th International Conference onTISSUE ENGINEERING AND REGENERATIVE MEDICINE

Robin C Muise-Helmericks, John Vournakis and Amy D Bradshaw
Medical University of South Carolina, USA
Marine Polymer Technologies Inc., USA
ScientificTracks Abstracts: J Tissue Sci Eng
DOI: 10.4172/2157-7552-C1-033
Abstract
The structural balance between elastin, collagen and other extracellular matrix components is absent in adult wound repair resulting in misaligned and excessive collagen deposition that contributes to scar formation. Our findings show that a marine derived pGlcNAc nanofiber stimulates tensile strength and elasticity of wounded skin so that it is equal to that of uninjured skin. Nanofibers promote cellular alignment, secretion of aligned collagen fibers and increased tropoelastin expression. Nanofiber-dependent reductions in scar formation are, in part, due to activation of an integrin/Akt1-dependent pathway. In addition to the activation of Akt1, our deep sequencing results suggest a role for a TLR4/type-I interferon (IFNαβ) pathway in the nanofiber-driven anti-fibrotic phenotype. Here we show that pGlcNAc nanofibers specifically stimulate type-I IFN (IFNαβ) expression via activation of Toll-like receptor 4 (TLR4), in the absence of TLR4-induced NFκB-dependent inflammatory responses in normal human fibroblasts and endothelial cells. TLR4 null animals fail to respond to nanofiber treatment, which can be rescued by addition of IFNα2A to the wound bed. Indeed, inhibition of type-I IFN activity using a blocking antibody against the type-I IFN receptor inhibits nanofiber induced tissue repair. Our findings support a model where nanofiber stimulation of TLR4 preferentially favors the IFNαβ response over an inflammatory response mediated through MyD88. As inflammatory responses lead to increased TGF-β production, increases in myofibroblast production and fibrotic, disorganized collagen deposition. Our findings suggest that reductions in inflammatory cell recruitment or activation results in reduced scar formation and increased tensile strength and elasticity of healed wounds. The marked difference in collagen deposition and increased elastogenesis in nanofiber treated wounds suggests that the nanofibers are specifically stimulating a more regenerative type of tissue repair.
Biography

Robin C Muise-Helmericks is currently an Associate Professor in the Department of Regenerative Medicine and Cell Biology, Member of the Hollings Cancer Center and Adjunct Associate Professor in the Departments of Oral Health at the Medical University of South Carolina.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7