alexa Portable Electronic Nose Applied To Determination Of Contaminants In Milk | 60942
ISSN: 2157-7110

Journal of Food Processing & Technology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

3rd European Food Safety & Standards Conference

Silva F L
Federal Institute of Education, Science and Technology of Maranhão, Brazil
Posters & Accepted Abstracts: J Food Process Technol
DOI: 10.4172/2157-7110.C1.054
Abstract
Milk is one of the most consumed foods in the world and one of the most likely to suffer adulteration by adding water or even chemical substances which represents a serious risk to consumer health, due to this the development of more effective tools for the analysis of milk has been the subject of constant studies. Among the characteristics of milk, the aroma is one of the most important and can say much about the quality of the product. The electronic nose has demonstrated to be a promising tool for the analysis of flavorings and similar to human olfaction, it uses an array of chemical sensors with partial selectivity associated with pattern recognition powerful techniques, among them the artificial neural networks have shown satisfactory performance and efficiency being the most used for discrimination of aromatic profiles. This paper presents the performance of a portable electronic nose designed for the quality evaluation of milk when it is subjected to adulteration by chemicals such as formaldehyde, sodium hydroxide and urea, the differential of this device compared to hallowed techniques of physicochemical analysis is the possibility of obtaining real-time response and adds portability, low cost and simple interface. For two months, we analyzed five commercial brands of milk and from these, samples were separated containing different proportions of the contaminants cited, altogether 40 samples were analyzed. For the recognition and classification of each contaminant, we use a neural network multilayer perceptron, in addition, other techniques facilitated the development of neural network such as the bootstrap resample used to create a network training data set from the original samples, network parameters were adjusted using sequential simplex optimization and the reliability of the results was analyzed through statistic tools. The neural network showed satisfactory performance recognizing all contaminants from the set of test samples constituted only by the original samples, samples used for training obtained from the bootstrap, 95% were correctly classified as 97% of validation samples and this demonstrates that the network is able to learn to identify the aromatic profile of each contaminant. The advantage observed by the incorporation of artificial neural networks to the electronic nose is the possibility to circumvent the effects of noisy signals and interferences which the electrical measurements are subject. This is the first time that the electronic nose is applied to discrimination milk when subjected to adulteration by various types of contaminants which makes it an innovative tool for the dairy industry.
Biography

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7