alexa Predicting Placebo And Subpopulation Effects With NetraAI’s Machine Learning Technology | 72936
ISSN: 2167-0870

Journal of Clinical Trials
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

4th International Conference on Clinical Trials
September 11-13, 2017 San Antonio, USA

Joseph Geraci
NetraMark Corp, Canada
Posters & Accepted Abstracts: J Clin Trials
DOI: 10.4172/2167-0870-C1-020
Abstract
Pharmaceutical companies are using machine-learning (ML) algorithms to help them deal with difficult clinical trials. There are however two inherent problems that pharmaceutical companies face when attempting this type of remedy: 1) Complex patient population heterogeneity and 2) Relatively small sample sizes. The first issue provides a difficult setting for ML methods simply because many algorithms are going to try to do their best to learn what is asked of them, e.g., responders vs. nonresponders as labeled by a clinician, which may be inaccurate. Further, the variables collected may actually have nothing to do with why a subset of patients respond, and so the machine ends up providing models based on data artifacts. This destroys vital predictability. The second issue is well known but we have discovered that by utilizing geometry to extract several perspectives of high dimensional data in a simple to read way, the machine can learn and extrapolate in an accurate way. The NetraAI system is thus capable of identifying those subjects who are predictable from the data that is provided and in addition, capable of quickly learning about the patient population so that predictions for placebo, safety, and efficacy can be trusted. We will provide examples derived from academic and pharmaceutical data sets.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version