alexa Rational Design Of Nucleus Targeting Nano-particles For Enhanced Intracellular Active Transport | 24404
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

4th International Conference on Nanotek & Expo

Rony Granek and Ohad Cohen
ScientificTracks Abstracts: J Nanomed Nanotechnol
DOI: 10.4172/2157-7439.S1.017
Abstract
Drug delivery and gene transfection systems often use solid nano-particles (NPs) as carriers. While this is not as efficient as the use of viral vectors, there is an increasing effort to improve such systems in order to avoid both risk of disease infection and patient discomfort. Upon entry into the cell, the NP carrier must arrive at its intracellular target where the drug is to be released. In particular, the nucleus is considered as a popular target. An obvious way of improving the NP?s transport efficiency (from the plasma membrane to the nucleus) would be to harness the cell?s natural active transport system, in particular the microtubule network and its associated motor proteins, for this purpose. This is reminiscent of the mechanism adopted by adenoviruses and retroviruses, e.g., HIV and Herpes Simplex virus. These viruses have been shown to localize at the centrosomal region, and are known to be highly efficient vectors for gene therapy. Mimicking their working mechanisms is therefore a very promising route. A rational design for a nano-particle is suggested, that will maximize the arrival efficiency from the plasma membrane to the nuclear surrounding. The design is based on grafting the particle surface with polymer spacers, each ending with a motor protein associating molecules, e.g., nuclear localization signal peptide. It is theoretically shown that the spacer polymer molecular weight can be adjusted to significantly increase the effective particle processivity time. This should lead to appreciable enhancement of active transport of the nano-carrier, and consequently drug delivery, to the nucleus.
Biography
Rony Granek is currently a Full Professor in Ben-Gurion University. He has received his PhD in 1990 from Tel-Aviv University, School of Chemistry, Dept. of Chemical Physics and later he was joined as a Postdoctoral Research Associate in Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge. He has published more that 50 publications in reputed journals.
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version