alexa Rational Design Of Organic Electrode Materials: New Advances And Tools
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Christine Frayret, Daniele Tomerini, Julie Bonnard, Carlo Gatti and Yann Danten
Université de Picardie Jules Verne, France
CNR-ISTM, Italy
Université de Bordeaux 1, France
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
The demand for sustainable energy sources has stimulated great interest in new technologies and materials. A multitude of research efforts in recent years have led to marked progress in this area, including in particular lithium-ion batteries based on organic electrodes. A significant milestone in designing such materials would correspond to the comprehension of the rules governing the increase/decrease of the redox potential of molecular entities, especially if differentiation between various backbones/functional groups/redox centers or incidence of atom substitution within rings can be reached. Based on the combined use of molecular quantum simulation and accurate examination of the electronic structure properties, a rational design of organic electrode materials can be performed. In addition to spin density populations’ estimation, different additional tools can be used to understand molecular redox potential trends. For instance, NICS (nuclear independent chemical shift), HOMA (harmonic oscillator model of aromaticity), δFLU indicators, etc., have the opportunity to electron delocalization on various rings/bond paths within a molecule in a quantitative way. In this context, the partitioning of the global energy of the molecule may constitute another analysis instrument to shed light on the various pieces of molecule playing the main role in stabilization/destabilization upon reduction or how balance between some competitive effects does occur. Such approach can be applied to systematic theoretical screening of existing compounds/hypothetical novel candidates, both being tuned through various effects. This should progressively complete the database for the discovery of new/ optimized organic electrodes with improved features. Thanks to this methodology a work of prospection has been undertaken on various families, including derivatives of quinone, carboxylate, quinoneazine and pentalenedione. By focusing on these various sets of compounds, we identified some property-based guidelines, which may serve not only for the ranking of the studied entities but also for the search of more advanced systems.
Biography

Christine Frayret is an Associate Professor and has done her PhD degree from the University of Bordeaux 1, Institute of the Chemistry of Condensed Matter from Bordeaux (ICMCB, CNRS UPR 9048) France. She was mainly involved in the area of solid electrolytes/electrodes for fuel cells and luminescence of materials. She then joined the Laboratory of Reactivity and Chemistry of Solids at University of Picardie Jules Verne (LRCS, CNRS UMR 7314, Amiens, France), where she started to focus on battery materials. Her most recent work addresses determination of structure-property relationships, identification of guidelines for the design of energy related materials, especially for the potential next generation storage devices involving novel more eco-friendly organic electrodes and investigations on photochromic materials.

Email: christine.frayret@u-picardie.fr

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords