alexa Rotational Motion Driven By Single Electron Tunnelling
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference on Nanotek & Expo
December 02-04, 2013 Hampton Inn Tropicana, Las Vegas, NV, USA

Alexander Eisfeld and Alexander Croy
ScientificTracks Abstracts: J Nanomed Nanotechnol
DOI: 10.4172/2157-7439.S1.013
Abstract
Much effort has been devoted to investigate the coupling of electrical and mechanical degrees of freedom on the nanometer scale in order to design novel electronic devices. An example is the nano-mechanical single-electron transistor (NEMSET), where electrons are transported from a source to a drain electrode via a movable nano-object which can be occupied by exactly one electron. The charged object experiences a force caused by the electric field between source and drain. The interplay of vibrational motion of the particle and the strong distance dependence of tunneling (which is responsible for charging/decharging) gives rise to mechanically assisted electron transport, called electron shuttling. Recently we investigated a nano-rotor based on the same mechanism as the electron shuttle described above. This rotor exhibits novel effects, which could be used for various applications, like sensors or charge pumps. The coupling of mechanical motion and tunneling leads to the self-excitation of oscillatory motion and large bias voltage to rotational motion even in the presence of damping. The frequency of oscillation/rotation depends on the ratio of the driving force and the friction. For small ratios the rotors oscillates and the current through the device decreases with increasing bias voltage (negative differential conductance). For larger bias full rotations appear with increasing frequency. Thus one may realize a nanoscale motor driven by static voltage. We will also present new results how the direction of rotation depends on the asymmetry of the rotor.
Biography
Alexander Eisfeld has obtained his Ph.D. from the University of Freiburg and is now leading the research group Quantum Aggregates at the Max- Planck-Institute for the Physics of Complex Systems
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords