alexa Safe Management Strategies Of Nanowastes In South Korea
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

4th World Congress and Expo on Recycling
July 27-29, 2017 | Rome, Italy

Ji Hye Jo
Korea Environment Institute, South Korea
Posters & Accepted Abstracts: Int J Waste Resour
DOI: 10.4172/2252-5211-C1-006
With the rapid development of nanotechnology, the use of nanomaterials has increased sharply in various industrial, medical and environmental sectors. A considerable amount of nanomaterials have been discharged in the form of nanowastes in manufacturing plants or laboratories, or after being used by consumers. Concerns over the safety risks of these nanomaterials or nanoproducts to human health have also been continuously raised. In South Korea, the world's third largest producer of nanogoods, there are little data about how nanowastes are exposed to the environment and discharged. In case nanowastes are recycled, nanoparticles containing dust are discharged in the crushing process and released, having negative effects on workers’ health and the environment. Sludges and ashes generated during wastewater treatment and incineration, respectively, end up in landfills and are discharged back into the environment as secondary nanowastes. In this study, we examined the behavior of nanomaterials based on the material flow analysis applied from the major sources of nanowastes to the final landfill through waste treatment facilities. We analyzed the management system and issues by estimating the flows of well-known nanomaterials (n-TiO2, n-ZnO, n-Ag, CNT) with focus on waste incineration process (scenario I~III). According to scenario III which reflects the domestic waste treatment rates, about 48 tons of n-TiO2 and 178 tons of n-ZnO would be discarded to the landfill per year after incineration. In case of n-Ag, a relatively small amount would be produced, among which 7 tons could be processed in incinerators. While around 1 ton of carbon nanotubes would be incinerated, around 99% are estimated to be removed after combustion. In conclusion, other nanomaterials except CNT would not be removed in the incineration process and end up in landfill sites, leading to prediction that a small amount of nanomaterials or less than 0.04% would be emitted into the atmosphere.

Ji Hye Jo is a Research Fellow at Korea Environment Institute, the Korea’s leading think tank on environmental policy and environmental impact assessment (EIA) sponsored by Korean Government. Her major was a Biological Hydrogen Energy Production. Recently, her research interest includes sustainable resource circulation and waste management policy. She focuses on efficient waste-to-energy, recycling of rare metals and safe management of hazardous wastes such as medical wastes.

Email: [email protected]

image PDF   |   image HTML
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version