alexa Scaffold-free, Label-free And Nozzle-free Biofabrication Technology Based On Magnetic Levitational Assembly
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

8th International Conference on Tissue Science and Regenerative Medicine
September 11- 12, 2017 Singapore

Vladimir Mironov
3D Bioprinting Solutions, Russia
I.M. Sechenov First Moscow State Medical University, Russia
ScientificTracks Abstracts: J Tissue Sci Eng
DOI: 10.4172/2157-7552-C1-036
Abstract
Tissue spheroids have been proposed to use as building blocks in biofabrication and 3D bioprinting technologies. Labelbased magnetic forces-driven 2D patterning of tissue spheroids requires cell labeling by magnetic nanoparticles. Recently novel label-free approach for magnetic levitational assembly has been introduced. Here we report a first time rapid assembly of 3D tissue engineered construct using scaffold-free and label-free magnetic levitation of tissue spheroids. Tissue spheroids (so-called chondrospheres) of standard size and shape capable of tissue fusion have been biofabricated using non-adhesive cell culture flasks from primary culture of ovine chondrocytes. Label-free magnetic levitation has been performed using experimental set with permanent magnets in presence of gadolinium in cell culture media which enables magnetic levitation. Potential toxic effect of gadolinium has been systematically evaluated. Mathematical modeling and computer simulations have been used for modeling of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. Plastic beads have been initially used as physical analogs of tissue spheroids for determining an optimal regime of magnetic levitation in presence of parmagnetic gadolinium medium. It has been shown that chondrospheres were able to rapidly assemble into 3D tissue construct in the permanent magnetic field in presence of gadolinium in cell culture media. Thus, label-free magnetic levitation of tissue spheroids represents a perspective approach for rapid scaffold-free 3D biofabrication and an attractive alternative to label-based magnetic tissue engineering.
Biography

Vladimir Mironov has graduated from The Ivanovo State Medical University (MD) in Ivanovo, Russia and obtained his PhD in Developmental Biology at The Second Moscow Medical University in Moscow, Russia. He has worked at Max Plack Institute for Psychiatry, Germany and then at the Department of Regenerative Medicine and Cell Biology of The Medical University of South Carolina, USA, where he was the Director of Advanced Tissue Biofabrication Research Center. He has worked several years in Brazil as FAPESP and CNPq funded Visiting Professor at The Division of 3D Technology at The Renato Archer Center for Information Technology in Campinas, Brazil and at The Life Science Division of The National Metrology Center (InMetro) in Rio de Janeiro, Brazil. He has also worked as a Chief Scientific Officer of Russian start-up 3D Bioprinting Solutions which developed first Russian multifunctional 3D Bioprinter Fabion and print a first functional animal organ; mouse thyroid gland.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords