alexa Si Nanopowder For Internal Hydrogen Generation Materials
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th World Congress on Materials Science and Engineering
June 12-14, 2017 Rome, Italy

Hikaru Kobayashi, Yuki Kobayashi and Kentaro Imamura
Osaka University, Japan
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
Although Si bulk doesn’t strongly react with water, Si nanopowder reacts with it when its size is less than ~20 nm, leading to generation of hydrogen. In previous literature, reactions of Si nanopowder with strong alkaline solutions have been investigated to achieve high hydrogen generation rates for application to e.g., fuel cells. In the present study, we have aimed at generation of hydrogen in internal conditions. Hydrogen generated in the body, especially in bowels, is effectively absorbed, is circulated, and reacts with hydroxyl radicals which cause various diseases such as cancer, Alzheimer’s disease, Parkinson’s disease, etc. Figure 1 shows the concentration of hydrogen generated by the reaction of 1 g Si nanopowder with water in the neutral pH region. Hydrogen was generated even with ultrapure water, but the generation rate was very low. The hydrogen generation rate greatly increased with pH while pH didn’t change after the hydrogen generation reaction. Therefore, the reaction schemes are written as: Si+2OH-→SiO2+H2+2e, (1) 2H2O+2e→H2+2OH-. (2) In the initial reaction, Si reacts with OH− ions to generate hydrogen, SiO2, and electrons most probably in the SiO2 conduction band. In the subsequent reaction, generated electrons are accepted by water molecules, resulting in formation of hydrogen and OH− ions. Reaction (1) is the rate-determining step, and thus, the reaction rate greatly increases with pH. The above result indicates that when Si nanopowder is taken, it doesn’t react in stomach under acidic conditions due to gastric acid, but reacts with water in bowels in alkaline conditions because of pancreatic juice. We have performed hydrogen generation experiments under conditions similar to bowels, i.e., pH 8.3 and 36ºC. In this case, more than 300 mL hydrogen was generated from 1 g Si for 20 h. This hydrogen volume corresponds to that contained in more than 17 L saturated hydrogen-rich water.
Biography

Hikaru Kobayashi received Doctor of Science in Chemistry from Kyoto University in 1984. He was a Post-doctoral fellow in the Physics department at the University of Pennsylvania between 1984 and 1986, and then he started working at the Matsushita Electronics Company. He became an Associate Professor of Faculty of Engineering Science, Osaka University in 1990, and moved to Institute of Scientific and Industrial Research of Osaka University as a Full Professor. He has been performing researches on fabrication of Si nanopowder, its application to hydrogen generation material, anode material in Li ion batteries, and luminescent material. He has also been studying material science related to crystalline Si solar cells, especially surface and interface control to improve conversion efficiencies.

Email: h.kobayashi@sanken.osaka-u.ac.jp

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords