alexa Single Particle Spectroscopic Studies On Two-photon Photoluminescence Of Plasmon Coupled Gold Nanotriangle Dimers
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

2nd International Conference and Exhibition on Materials Science and Chemistry
July 13-14, 2017 Berlin, Germany

Monalisa Garai and Qing-Hua Xu
National University of Singapore, Singapore
Posters & Accepted Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-074
Abstract
Surface plasmon resonance (SPR) coupling between adjacent metal nanoparticles in aggregated nanoclusters results in significant enhancements in many optical responses, such as fluorescence, surface enhanced Raman scattering (SERS) and two-photon photoluminescence (2PPL). Here, 2PPL properties of gold nanotriangle (Au NT) dimers with different spatial arrangements have been investigated on single particle level to understand their different plasmon coupling effects on 2PPL enhancement mechanism and explore the limit of maximum achievable enhancement factor. Compared to NT monomer, scattering spectra of both side-byside and tip-to-tip coupled NT dimers are red-shifted by 101 nm and 175 nm, respectively with strong polarization dependence along their assembly axis, which can be understood in terms of plasmon hybridization theory. A close resemblance between scattering spectra and 2PPL spectra indicated SPR is the origin of observed 2PPL signal. 2PPL intensities of side-by-side and tip-to-tip dimers are enhanced by 1.0x103 fold and 2.6x104 fold respectively, compared to the NT monomer. Such a huge enhancement in tip-totip dimer is a combined effect of plasmon-coupling-induced red-shifted SPR band which has better overlap with the excitation wavelength and giant local electric field amplification due to the presence of sharp tips in inter-particle gap. The influence of sharp tips has been further demonstrated by comparing Au NT monomer and dimers with Au nanosphere (NS) monomer and dimer of similar dimensions. The 2PPL intensity of Au NT monomer is 20 times stronger compared to Au NS monomer, where as that of Au NT tip-to-tip dimer is 93.5 times stronger compared to Au NS dimer. All our experimental results show excellent agreement with numerically calculated integrated |E/E0|4 results. These findings offer a deeper insight in fundamental understanding of plasmon coupling enhanced 2PPL properties and provide a platform for various sensing and imaging applications.
Biography

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]om

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version