alexa Solar Cells Efficiency Enhancement By Plasmons Generation | 66515
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

9th World Congress on Materials Science and Engineering

Alexander Axelevitch
Holon Institute of Technology, Israel
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-067
Abstract
The urgent need to develop alternative energy source focuses the attention on solar energy as a solution for this problem. The sun represents an infinite renewable energy source, thus making it most attractive. Unfortunately, the efficiency of photovoltaic (PV) converters is limited due too high electrical and optical losses. It is known that each photon can produce only one pair of charged carriers. This is one of the most important factors limiting the efficiency of solar cells. In order to increase the efficiency of PV conversion, it is necessary to increase the number of charged particles generated by absorption of a single photon. For this goal, we apply the nano-structured metal thin films which capable to form a localized surface plasmon resonance (plasmon) in each metal nanoparticle under light illumination. A plasmon represents an ensemble of free electrons (holes) oscillating coherently inside the metal nanoparticles and can be considered as a source of additional electrons obtained due polarization of these metal nanoparticles. If the nanostructured metal thin film will be embedded in the p/n junction of a diode PV structure, we may to create the conditions which help to transfer additional electrons excited by light illumination to the conductive band of the applied semiconductor. This effect has been experimentally tested in our laboratory in different PV structures containing gold and silver nanoparticles. It was found that island thin metal films deposited by sputtering and embedded into the p/n junction significantly influence of the PV structure efficiency and the type of metal defines its behavior. The power generated in the heterojunction structures In2O3-Si with the gold island interlayer increases more than to 10 times comparing with the structure without gold nanoparticles. This technology may be applied for all types of inorganic solar cells.
Biography

Alexander Axelevitch has completed his PhD in Physical Electronics from Tel-Aviv University, Tel-Aviv, Israel in the year 2002. Since 1995, he has been working at the Holon Institute of Technology (HIT). He currently leads the Nanotechnology and Microelectronics Branch of the Engineering Faculty, the Laboratory of Microelectronics and Thin Films; and works as a Senior Lecturer in Faculty of Engineering at the Holon Institute of Technology. His main research interest includes thin films deposition methods, transition metal oxides, alternative energy sources, solar cells and plasmonic effects. He has eight patents, 67 referred articles and more 150 papers presented at many scientific meetings.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7