alexa Solubilization Of Phosphate Minerals Using Organic Acids And Implications On Rare Earth Processing
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd International Conference and Exhibition on Materials Science and Chemistry
July 13-14, 2017 Berlin, Germany

Daniel E Lazo, Laurence G Dyer and Richard D Alorro
Curtin University, Australia
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-073
Currently, hydrometallurgical processes are the only available method to extract rare earth elements (REEs) from monazite. Conventional hydrometallurgical methods employ extreme conditions including high temperatures, corrosive reagents and concentrated lixiviants. There is thus an impetus to identify more environmentally friendly, less expensive and safer processes to extract REEs. In the present study, the potential for using organic acids to enhance the solubilization of phosphate minerals was reviewed, with a view to relating behavior to monazite. Organic acids have shown applicability in processing phosphate minerals such as dissolving phosphorus from phosphate rocks. With respect to rare earths, it has been demonstrated that these acids have the ability to increase REE mobility and release additional anionic components from REE-bearing and similar minerals, further indicating their impact in dissolution. More specifically, low-molecular-weight organic acids (LMWOAs) such as citric, oxalic and phthalic acids intensify the mineral dissolution in apatite and monazite in natural environments. Therefore, the potential to use organic acids to extract rare earth elements (REEs) from monazite has been established. Experimental results demonstrated that the LMWOAs, especially oxalic acid, achieved a significant amount of monazite dissolution.

Daniel E Lazo has completed his Bachelor’s degree from the University of Lima, Peru, and his Master’s degree from Purdue University, West Lafayette, USA. He is currently pursuing his PhD degree in Extractive Metallurgy at the Western Australia School of Mines, Curtin University, Australia. He has work experiences in Peru, USA and Australia.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version