alexa Structural And Functional Investigation Of MexA/MexB/OprM, A Multidrug Efflux Pump From Pseudomonas Aeruginosa
ISSN: 2155-9597

Journal of Bacteriology & Parasitology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

International Congress on Bacteriology & Infectious Diseases
November 20-22, 2013 DoubleTree by Hilton Baltimore-BWI Airport, MD, USA

Martin Picard
ScientificTracks Abstracts: J Bacteriol Parasitol
DOI: 10.4172/2155-9597.S1.002
Abstract
Among the various mechanisms developed by the bacteria to counter to the effect of antibiotics, active efflux is on the front line. In Pseudomonas aeruginosa, a gram-negative bacteria, efflux transporters are organized as multicomponent systems where MexB, the efflux pump located in the inner membrane, works in conjunction with MexA, a periplasmic protein, and OprM, an outer membrane protein. MexB acts as a proton motive force-dependent pump with broad substrate specificity. We have determined the high resolution X-ray structure of OprM and combined this structural study with a normal mode analysis of the internal dynamics of the porin. In this dynamic analysis, some key residues appeared to be important for keeping the porin pore closed. In order to monitor the activity of this protein, we have used a microfluidic biomimetic chip for the monitoring of functional ion channels reconstituted within suspended artificial bilayer lipid membranes (BLM). The microfluidic chip permits long-term electrical investigation of ion-channel conductance. As a complementary approach, we are working on the functional reconstitution of the pumps into proteoliposomes. Very recently, we have designed a functional test for MexB. This original activity assay uses bacteriorhodopsin (BR), a light-activated proton pump, to generate a tunable, robust and reversible proton gradient. In this system, upon illumination with visible light, the photo-induced proton gradient created by the BR is shown to be coupled to the active transport of substrates through the pump. We are now working on the reconstitution of the whole efflux pump. Finally, in collaboration with the group of P. Minard, we are adapting a new set of synthetic scaffolds (dubbed α-reps for ?artificial alpha repeat protein?) to help us crystallize the efflux pumps. Such interactants are selected through in vitro screening of the membrane proteins targets. We make use of amphipathic polymers (amphipols) to stabilize and immobilize the proteins onto solid support so that the library of possible interactants can be screened.
Biography
Martin Picard received his Ph.D. in Biochemistry from the University Pierre and Marie Curie in 2004 (funded HFSP). In the group of Professor Marc Mayor, under the supervision of Dr. P. Champeil, they studied the Ca (2 +)-ATPase of sarcoplasmic reticulum (SERCA1a), a structural and functional point of view. In particular, they showed that, under certain conditions, the crystallization conditions can sometimes induce artifactual structures. In 2005, he made a post-doctoral fellowship at the University of Aarhus (FEBS long-term fellowship) in the group of Professor Poul Nissen for studying calcium from a structural point of view crystallography pump. The controversy about fixing the AMPPCP, a non-hydrolysable analogue of ATP, was resolved and the structure of the enzyme in the autophosphorylated state of high energy has been determined. Back in Paris, Martin Picard joined the group of Dr. Jean-Luc Popot to work on the use of amphiphilic polymers, amphipols, designed to stabilize membrane proteins in solution. He was hired in 2007 as a CNRS researcher in the group of Prof. Arnaud Ducruix group now led by Dr. Isabelle Broutin. He works on the efflux pumps of gram-negative bacteria Pseudomonas aeruginosa a structural point of and functional.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]nline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords