alexa Structure And Gelation Properties Of Casein Micelles Doped With Curcumin Under Acidic Conditions
ISSN: 2157-7110

Journal of Food Processing & Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Joint Conference on 8th World Congress on Agriculture and Horticulture and 16th Euro Global Summit on Food and Beverages
March 02-04, 2017 Amsterdam, Netherlands

Aya N Khanji
University of Lorraine, France
ScientificTracks Abstracts: J Food Process Technol
DOI: 10.4172/2157-7110.C1.059
Abstract
Statement of the Problem: Casein micelles are colloidal protein particles responsible for a large proportion of milk technological properties. The manufacture of dairy products (yogurt, fresh cheese and cheese) is based on the aggregation and gelation capacity of casein micelles done under acid and rennet conditions. In this work, the casein micelles are also considered as porous structures that can stabilize and vectorize hydrophobic molecules of interest in an aqueous environment. It has recently been shown that the casein micelles can interact with polyphenols such as curcumin, an antioxidant and anti-cancerous biomolecule. Theoretical Orientation: In this study, the ability of micellar casein (MC) to interact with curcumin was investigated. The influence of presence of the guest molecule on the casein micelles structure and acid gelation ability was reported. Methodology & Findings: Steady-state fluorescence spectroscopy of curcumin variation and fluorescence quenching of caseins upon binding with curcumin molecules were evidenced. Increasing the temperature from 20ºC to 35ºC enhanced MC–curcumin interactions as reflected by the increase in the binding constant. From changes in entropy, enthalpy and Gibbs free energy, hydrophobic interactions were proposed as major binding forces. Static fluorescence MC quenching was demonstrated for the MC–curcumin complex during acidification. Small angle X-ray scattering profiles demonstrated that the MC internal structure was unchanged upon curcumin binding. The ζ-potential value of curcumin-doped MC indicated that curcumin did not modify the global charge of MC particles. Acid gelation studied by oscillation rheology and static multiple light scattering at 20ºC and 35ºC led to a similar behavior for native and curcumin-doped MC suspensions. Conclusion & Significance: For the first time, it was demonstrated that the colloidal and functional properties of MC were unchanged when doped with curcumin during acidification. This conclusion leads to a better understanding on how to produce a biomolecule doped-yogurt.
Biography

Aya N Khanji has her expertise in Research and Biochemical Engineering, especially in Dairy Products. She has built this model after a year of experience in rheology, fluorescence spectroscopy, ζ potential measurements and small angle X-ray scattering. Her double major in Quality Control and Food Sciences allowed her to develop new products and process technologies with the respect of all norms such as HACCP approaches and know-hows. Determination and attention to detail combined with strong analytical and problem solving skills were earned during all her academic and professional career.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version