alexa
Reach Us +44-1904-929220
Studying The Effect Of Compression Ratio On An Engine Fueled With Waste Oil Produced Biodiesel/ Diesel Fuel | 15058
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/ diesel fuel

World Congress on Petrochemistry and Chemical Engineering

Mohammed El Kassaby and Medhat A. Nemit Allah

Accepted Abstracts: J Pet Environ Biotechnol

DOI: 10.4172/2157-7463.S1.004

Abstract
Wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics were studded when the engine operated using the different blends (B10, B20, B30, and B50) and normal diesel fuel (B0) as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel
Biography
Mohamed El Kassaby has completed his Ph.D. at the age of 32 years from Illinois University at 1983. He is the chair professor for Internal combustion engine branch at Alexandria university. He has published more than 35 papers in reputed journals and serving as an member in the committee for per motion of the teaching staff for higher education in the Egyptian universities
Relevant Topics
Top