alexa Synthesis And Characterization Of Poly(methyl Methacrylate-co-vinyl Acetate) And Its Evaluation As Filtrate Reducer

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

World Congress on Petrochemistry and Chemical Engineering
November 18-20, 2013 Hilton San Antonio Airport, TX, USA

Elizabete F. Lucas, Rita de Cassia P. Nunes, Renata V. Pires, Taissa Z. Lopes, Angelo Vianna and Rosana Lomba
ScientificTracks Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463.S1.002
The drilling fluids of petroleum wells must present different functions, such as filtration controlling. In this work, microparticles of poly(methyl methacrylate-co-vinyl acetate) (MMA/VAc) were synthesized by suspension polymerization and their performance as filtrate controller in aqueous fluids were evaluated. The polymers were characterized by 13C-nuclear magnetic resonance (NMR), particle size analyses, optical microscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). The poly(methyl methacrylate-co-vinyl acetate) particles were obtained with slight different proportions of MMA/VAc. As expected, all particles presented spherical shape. The glass transition temperatures decreased as the VAc content increased, confirming the rubbery character of the spheres containing higher vinyl acetate content. TGA results showed that the copolymer has the thermal resistance required for the application under study: they lose mass only at temperatures above 146?C. The results of the filtrate reducing test, using ceramic discs with different pore sizes as filter element, showed that the performance of the polymer samples in related to: (1) the average particle size of the polymer samples in relation to the average sizes of the pores of the rock; and (2) the elastomeric characteristic of the polymer, which facilitates the polymer compression in the pores of the rock forming a more efficient grout. On the other hand, the more efficient is the polymer in block the pore rock, the more difficulty is removing the polymer seal to restore the oil production.
Elizabete F. Lucas is Chemical Engineer and obtained her D.Sc. degree in Polymer Science and Technology from Federal University of Rio de Janeiro (UFRJ) in 1994. She is Associate Professor at UFRJ since 1994 and has been accumulating a great experience in Polymer Science Applied to Petroleum Production for about 25 years. She is the director of the Laboratory of Macromolecules Applied to Petroleum Production (LMCP), has published 107 scientific papers, presented more than 250 talk/poster at conferences and written 3 books, 1 polymer dictionary, 1 vocabulary of oil chemistry and refining (in 4 languages), 1 book translation and 3 chapters of books. Since she has a strong interaction with petroleum industry, about 90 research reports and 36 technical reports have been prepared. The main studies involve polymer synthesis/characterization/properties, physical-chemistry of polymer solution, rheology of polymers and methods to evaluate the performance of polymers applied to different operations in oil production, from drilling to oil and water treatment. In such field, she has directed 30 master dissertations and 14 doctor thesis, and has 7 master dissertations and 11 doctor thesis under direction
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version