alexa Synthesis And Thermal Stability Of Monodisperse ZrO2@SiO2 Core-shell Submicron Particles
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference and Expo on Ceramics and Composite Materials
June 26-27, 2017 Madrid, Spain

Maik Finsel, Gregor Dahl, Maria Hemme, Horst Weller and Tobias Vossmeyer
University of Hamburg, Germany
ScientificTracks Abstracts: J Material Sci Eng
DOI: 10.4172/2169-0022-C1-070
Abstract
In recent years, zirconia (ZrO2) micro- and sub-microparticles have attracted considerable attention due to their outstanding properties, including chemical inertness, thermal stability and high refractive index. They are suited for a broad variety of applications ranging from fuel cells, catalysis, electro- and bioceramics to building blocks in photonic structures. The latter are promising materials for high-temperature applications, including thermal barrier coatings (TBC) and structural colors (SC). The thermal stability, surface smoothness and optical properties of zirconia particles can be improved or modified by encapsulation with a suitable shell material. By using different types of shells, e.g. Al2O3, SiO2, TiO2 or polymers, desired properties of the resulting core-shell composites for various applications are achievable. For example, silica shells ensure a strong refractive index contrast for application as structural colors. Previously, it was shown that silica shells could be grown on ZrO2 cores after surface modification with organic additives (polymer, citric acid). However, such additives most likely preclude high-temperature applications. For the preparation of [email protected] core-shell sub-microparticles, we developed a straightforward approach without the need of additional organic capping agents by using SiO2 seeds as self-adhesive layer. The zirconia core particles were synthesized according to the solgel method by Widoniak et al. modified to achieve smaller diameters. In the pre- encapsulation step, silica seeds are formed on the core surface. The silica shell can then grow smoothly on its self-adhesive layer and its thickness is controlled by successive addition of silica precursor. The obtained core-shell particles withstand temperatures up to 1000°C whereas size-comparable zirconia particles disintegrate when heated to 800°C. Also, core-shell particles synthesized using polyvinylpyrrolidone (PVP) as interfacial coupling agent disintegrate when heated to 800°C, most likely due to decomposition of PVP. Using XRD, SEM and cross-sectional TEM characterization, we show how grain growth and phase transitions are influenced by the SiO2 encapsulation of ZrO2 submicron particles. Additionally, the thermal stability can be improved by doping zirconia cores with yttrium or yttrium/lanthanum, as recently shown for zirconia microparticles.
Biography

Maik Finsel conducted his Master’s thesis investigating the mechanical properties of nanoparticle composites (University of Hamburg) and spent one semester in Denmark (Southern University of Denmark, Odense) working on transition metal complexes. He gained expertise in the synthesis and characterization of doped and undoped zirconia microparticles doing his PhD at the University of Hamburg, Germany. He also works on the encapsulation of ceramic microparticles with silica and alumina to achieve dielectric core-shell particles for photonic high-temperature applications.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords