alexa Targeted Muscle And Sensory Reinnervation For Amputees | 69520
ISSN: 2161-0533

Orthopedic & Muscular System: Current Research
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

9th Orthopedics & Rheumatology Annual Meeting & Expo

Todd A Kuiken
Rehabilitation Institute of Chicago, USA
Northwestern University, USA
Keynote: Orthop Muscular Syst
DOI: 10.4172/2161-0533-C1-034
Abstract
Providing adequate control of a powered artificial arm is difficult, especially with high levels of amputation where the need is greatest. We have developed a new technique to create a bi-directional neural interface for artificial limbs called ‘targeted muscle reinnervation’ (TMR). With TMR, it is possible to take the residual nerves in an amputated limb and transfer them to spare muscle and skin in or near the limb. The nerves grow into this muscle and then the surface EMG over this muscle can be used as an additional control signal. For example, if the median nerve reinnervates a small region of surface muscle, then when the amputee thinks ‘close hand’ this muscle will contract and the myoelectric signal can be used to close the powered hand. Since physiologically appropriate neural pathways are used, the control is intuitive, thus easier and faster for the amputee. Similarly, sensory nerves can be transferred to the residual nerves so that skin of the chest or arm is reinnervated-targeted sensory reinnervation (TSR). Then when the amputee is touched on this reinnervated skin, it feels like he or she is being touched in the missing arm or hand. TSR can provide a pathway for true sensory feedback of light touch, graded pressure, sharp/dull and thermal feedback. Research is presented showing how the skin of residual limbs has been reinnervated by hand afferents and our early attempts to provide closed loop feedback. TMR also is proving to be a very successful treatment for painful neuromas and it is likely an effective treatment to prevent neuromas. Essentially when a cut nerve or cut off neuroma are transferred to a small section of denervated muscle (by cutting a local motor point for example), the regenerating nerve now has a volume of muscle to grow into and many functional connections are formed. Thus the nerve is treated in a physiologically appropriate manner, more like a primary nerve repair. Compelling animal model data and a thorough review of neuroma pain in TMR patients will be presented.
Biography

Todd A Kuiken has received his MD and PhD in Biomedical Engineering from Northwestern (1990) and his Residency in PM&R at the Rehabilitation Institute of Chicago (1995). He is a Professor in the Deparment of PM&R, Biomedical Engineering and Surgery of Northwestern University. He is currently the Director of the Center for Bionic Medicine (CBM). His hey projects have include the development of targeted muscle reinnervation, pattern recognition control for powered prosthetic arms, the development of novel robotic arm and leg prostheses and unique wheelchair designs.

Email: [email protected]

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7