alexa Targeting Calcium Signaling As A Novel Therapeutic Strategy For Cardiac Hypertrophy And Failure | 16615
ISSN: 2155-9880

Journal of Clinical & Experimental Cardiology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

4th International Conference on Clinical & Experimental Cardiology

Tamer M. A. Mohamed
ScientificTracks Abstracts: J Clin Exp Cardiolog
DOI: 10.4172/2155-9880.S1.019
Abstract
Identification of novel regulators of cardiac hypertrophy is key in understanding the mechanisms of heart failure. The plasma membrane calcium ATPase 4 (PMCA4) is a ubiquitously expressed Ca2+ pump that is involved in regulating calcium signaling in the heart. Here we investigated a novel role of PMCA4 in controlling myocardial hypertrophy. We subjected mice with a global knockout of PMCA4 (PMCA4-/-) to transverse aortic constriction (TAC) for 5 weeks. PMCA4-/- mice exhibited a significantly reduced hypertrophic response compared with wild type (WT) mice. This was accompanied by less fibrosis and a lower expression of hypertrophic marker BNP. However, cardiomyocyte specific knockout of PMCA4 did not show any protective effect following TAC prompting us to hypothesize that the protective effect might be due to PMCA4 ablation in fibroblasts. Microarray analysis revealed a ~100 folds upregulation of secreted frizzled-related protein 2 (sFRP2) in PMCA4-/- fibroblasts. sFRP2 is a potent inhibitor of the Wnt/β-catenin pathway. To unravel the clinical relevance of our findings we developed a specific pharmacological inhibitor of PMCA4, which had not previously been available. Using a modified colorimetric ATPase assay we screened a library of medically optimized drug-like molecules and identified Aurintricarboxylic acid (ATA) which has an IC50 of 150 nM for PMCA4. Injection of ATA in mice (5 mg/kg body weight/day ip) treated the pre-established TAC-induced hypertrophy. Overall, our results demonstrated that specific inhibition of PMCA4 prevents and reverses pressure-overload hypertrophy making the plasma membrane calcium pump a potential target for the treatment of cardiac hypertrophy
Biography
Tamer Mohamed has completed his Ph.D. at the age of 30 years from University of Manchester, UK and held various Postdoctoral training at the University of Manchester, University of Glasgow, and University of Gottingen. He is currently conducting a collaborative research program between the University of Manchester and the J. David Gladstone Research Institute (UCSF) to identify novel therapies for heart failure. He has published more than 15 papers in reputed journals in the past 10 years and has been awarded several awards including the prestigious Young Investigator Award at the European Society of Cardiology Congress in 2010
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7