alexa Targeting The Human Cancer Pathway Protein Interaction Network By Structural Genomics
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

4th International Conference on Proteomics & Bioinformatics
August 04-06, 2014 Hilton-Chicago/Northbrook, Chicago, USA

Yuanpeng Janet Huang and Gaetano Montelione
ScientificTracks Abstracts: J Proteomics Bioinform
DOI: 10.4172/0974-276X.S1.071
Abstract
Structural genomics provides unique opportunities for characterizing and understanding systems biology. As a step towards better integrating protein 3D structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their proposed physical protein-protein interactions. The current version of HCPIN was constructed by identifying ?core proteins? associated with classical cancer-associated cellular processes using the KEGG database, and then expanded to include binding partners of these ?core proteins? based on physical protein-protein interaction data (e.g. co-IP, Y2H data) obtained from the Human Protein Reference Database (HPRD). The HCPIN database includes some 4,400 human proteins, with some 15,000 putative pair-wise physical interactions. Many well-known cancer-associated proteins (e.g. p53, NF-kB, EGF receptor, etc) play central roles as ?hubs? or ?bottlenecks? in the HCPIN. While some 50% of residues in these proteins are in sequence segments that meet criteria sufficient for approximate homology modeling (Blast E-val < 10-6), < 30% of residues in these proteins are structurally covered using high-accuracy homology modeling criteria (i.e. Blast E-val < 10-6 and at least 80% sequence identity) or by actual experimental structures. Since these human protein structures will be used for many different kinds of biophysical studies, we have defined our goal as structural coverage of HCPIN at the 80% sequence identity level, rather than the 30% level used in our other PSI work. The NESG HCPIN website (available at www.nesg.org) provides a comprehensive description of this biomedically important multi-pathway network. It is a useful tool for cancer biology research, providing experimental and homology models of HCPIN proteins, information about their protein partners, and access to extensive expression and sample production data generated by the NESG. The NESG is targeting > 1,000 human proteins (> 3,000 domains) from the HCPIN for sample production and 3D structure determination. About 100 human protein structures from the HCPIN, including a few complexes, have been determined and deposited in the PDB to date, with several more in final stages of refinement. Information provided on the NESG HCPIN website also includes the experimentally-identified binding partners of each HCPIN protein, as well as information about disorder/order transitions that may occur upon complex formation. These data will drive our efforts to determine structures of HCPIN proteins and their complexes in PSI3:Biology. We will present the NESG progress on the HCPIN protein production and a brief survey of HCPIN protein structures solved by NESG.
Biography
Yuanpeng Janet Huang received her PhD in Molecular Biophysics and Bioinformatics in 2001. Since then, she jointed the Northeast Structural Genomics Consortium (NESG) at Center for Advanced Biotechnology and Medicine, Rutgers-the State University of New Jersey. Dr. Huang is currently an associated research professor at Rutgers, working on structural genomics for cancer protein pathway and develop new methods for structural determination by NMR. She has co-authored over 50 scientific peer-reviewed publications.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords