alexa The Diagnostic Challenge Of Rare Diseases: Lack Of Knowledge Or Leaking Method?
ISSN: 2157-7412

Journal of Genetic Syndromes & Gene Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd World Congress on Rare Diseases and Orphan Drugs
June 29-30, 2017 London, UK

Shmuel Prints
Clalit Health Service, Israel
ScientificTracks Abstracts: J Genet Syndr Gene Ther
DOI: 10.4172/2157-7412-C1-012
Statement of the Problem: Rare diseases usually take an inordinately long time to be diagnosed. This delay is traditionally explained by the low suspicion rate of physicians towards rare disorders, and their lack of knowledge of these items. I would like to propose that this does not consider the main culprit of clinical diagnostic workup, algorithmic search. Methodology & Theoretical Orientation: The classification algorithm is a step-by-step process for exclusion from all possible entities except right. In every step, it considers one feature of the case. Depending on whether this case displays the feature or not, the algorithm dictates the next explored sign. There are multiple algorithms or “classification trees” for the same signs. The recognition of diagnostic symptoms and signs in current medicine is never exact. Therefore, any classification tree has missed diagnoses. For ancient medical traditions and newest insurance imperatives, the best algorithm must have minimal mistakes. The result of this approach is a quick and accurate diagnosis of the most frequent and well-known diseases, and neglect of rare clinical entities. New approaches to medical diagnosis base on machine learning. They traditionally focus on maximizing the recognition rates and suffer from the same defect. Conclusion: To better recognize rare diseases, we need to take a different way to their diagnosis in general.

Shmuel Prints is a certified Internal Diseases Specialist with a long-term experience in outpatient practice. He has special interest in Rheumatology & Lung Diseases areas. He acquired his knowledge of statistic methods in medicine from Public Health Training in Ben-Gurion University, Israel. This led to his collaboration with Prof. Leonid Naumov, a Pioneer in algorithm using for medical diagnose. Furthermore, he developed a unique crowd sourcing system for diagnosing rare disorders, based on an understanding of mathematical methods for machine learning. The system's innovation lies in ranking the doctor's presentation of the patient and not the diagnostic assumptions.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version