alexa The Effect Of Different Oxygen Tensions On Modulating The Early Differentiation Potentials Of Human Induced Pluripotent Stem Cells
ISSN: 1948-5956

Journal of Cancer Science & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

10th International Conference on CANCER STEM CELLS AND ONCOLOGY RESEARCH
June 26-28, 2017 London, UK

Reema Mohammed
University College of London, UK
Posters & Accepted Abstracts: J Cancer Sci Ther
DOI: 10.4172/1948-5956-C1-103
Early development of mammalian embryos occurs in a relatively low oxygen microenvironment in the reproductive tract (1.5- 5.3% O2). Yet, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are routinely cultured in atmospheric conditions. In this study, our aim was to investigate the effect of different oxygen tensions on the short-term culture of human iPSCs and on stem cell-fate determination during early differentiation. We performed gene-profiling analysis of human iPSCs maintained under normoxic (20% O2) and a range of hypoxic (0%, 2%, 5%, 8% and 12% O2) conditions. The expression of genes associated with pluripotency, embryonic germ layers and hypoxia were studied using qualitative RT- PCR, immunostaining and flow cytometry. Preliminary results revealed that after four days of culturing human iPSCs at different hypoxic levels, morphological changes were observed. Additionally, hypoxia down-regulated the expression of pluripotency markers. Hypoxic conditions also promoted the expression of genes associated with the three germ layers and genes that are involved in the hypoxia-signalling pathway. Interestingly, mild hypoxia (8% O2) increased the number of cells expressing Brachyury (Mesodermal marker), while acute hypoxia (2% O2) caused 95% of human iPSCs to differentiate into ectodermal lineage indicated by Nestin up-regulation. Thus, our results suggest that hypoxia is an important component of in vitro differentiation for the generation of clinically relevant progenitors.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version