alexa The Role Of Biodegradable Engineered Random Polycaprolactone Nanofiber Scaffolds Seeded With Nestin‑positive Hair Follicle Stem Cells For Tissue Engineering
ISSN: 2157-7013

Journal of Cell Science & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

8th World Congress and Expo on Cell & Stem Cell Research
March 20-22, 2017 Orlando, USA

Maliheh Nobakht
Iran University of Medical Sciences, Iran
ScientificTracks Abstracts: J Cell Sci Ther
DOI: 10.4172/2157-7013.C1.038
Abstract
Background: Tissue engineering is a new approach to reconstruction and/or regeneration of lost or damaged tissue. The purpose of this study was to fabricate the polycaprolactone (PCL) random nanofiber scaffold as well as evaluation of the cell viability, adhesion, and proliferation of rat nestin‑positive hair follicle stem cells (HFSCs) in the graft material using electrospun PCL nanofiber scaffold in regeneration medicine. Materials & Methods: The bulge HFSCs was isolated from rat whiskers and cultivated in Dulbecco’s modified Eagle’s medium/F12. To evaluate the biological nature of the bulge stem cells, flow cytometry using nestin, CD34 and K15 antibodies was performed. Electrospinning was used for the production of PCL nanofiber scaffolds. Furthermore, scanning electron microscopy (SEM) for HFSCs attachment, infiltration, and morphology, 3‑(4, 5‑di‑methylthiazol‑2‑yl)‑2, 5‑diphenyltetrazolium bromide (MTT) assay for cell viability and cytotoxicity, tensile strength of the scaffolds mesh and histology analysis were used. Results: Flow cytometry showed that HFSCs were nestin and CD34 positive but K15 negative. The results of the MTT assay showed cell viability and cell proliferation of the HFSCs on PCL nanofiber scaffolds. SEM microscopy photographs indicated that HFSCs are attached and spread on PCL nanofiber scaffolds. Furthermore, tensile strength of the scaffolds mesh was measured. Conclusion: The results of this study revealed that modified PCL nanofiber scaffolds are suitable for HFSCs seeding attachment and proliferation. Furthermore, HFSCs are attached and proliferated on PCL nanofibers scaffolds.
Biography

Maliheh Nobakht is a full Professor of Medical Histology and Embryology in Iran University of Medical Sciences. She is a board certified Histologist and Embryologist and is engaged in education and is a basic Science Scientist known an Investigator at Iran University. She has expertise in wound healing and stem cell biology, scaffold and Neuroscience. She graduated from Tehran University in 1985, with a Bachelor of Science degree in Biology. Then, she received Master of Science degree on Histology and Embryology in 1987. She received her PhD degree from Tarbiat Modarres University on Histology in 1992. Subsequently, in 1994, she completed her Post-doctoral training in Molecular Biology and Electron Microscopy under supervision of Professor Leblond and Dr. Lee at McGill University and Shriner's Hospital in Montreal, Quebec, Canada. She became a full Professor in Histology Medicine in 2011 and at the same time, she was appointed to be the Co-director of the vice of education.

Email: [email protected]

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords