alexa The Role Of Reduced Graphene Oxide Capping On Defect Induced Ferromagnetism Of ZnO Nanorods
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

3rd International Conference on Nanotek & Expo
December 02-04, 2013 Hampton Inn Tropicana, Las Vegas, NV, USA

Sushil K. Misra, Anand Prakash and D. Bahadur
ScientificTracks Abstracts: J Nanomed Nanotechnol
DOI: 10.4172/2157-7439.S1.013
Abstract
In this study, the effect of different numbers of layers of reduced graphene oxide (RGO) on the ferromagnetic behavior of zinc oxide-reduced graphene oxide (ZnO-RGO) hybrid architectures has been investigated. Scanning and transmission electron microscopy along with x-ray diffraction of these hybrids confirm that ZnO nanorods are wrapped with different numbers of layers of RGO in a controlled way and their hexagonal phase is unaffected by these layers. Raman and photoelectron spectroscopy of these hybrids reveals that RGO does not alter the nonpolar optical phonon E2 (high) mode and chemical state of Zn(2+) in ZnO. Electron paramagnetic resonance (EPR) spectra show that RGO passivates singly charged oxygen vacancies (VCOS) in ZnO. It correlates the passivation efficiency of VCOS to the number of RGO layers and this has been achieved up to 90% by _31 layers of RGO. Due to passivation of VCOS in ZnO by RGO, the ferromagnetic behavior (saturation magnetization and divergence between zero field cooled and field cooled) in ZnO-RGO hybrids is suppressed as compared to ZnO. Combining the EPR and magnetic behavior, a direct link between the passivation of the singly charged oxygen vacancies present on the surface of ZnO nanorods and the number of RGO layers is established.
Biography
Sushil K. Misra is a Full Professor of Physics at Concordia University, Montreal, Canada. He has done extensive experimental and theoretical research in electron paramagnetic resonance, with some 270 papers to his credit. Currently, he collaborates with ACERT (Advanced Center for Electron Spin Resonance Technology) at Cornell University. He has written numerous review articles and book chapters on EPR, and has been invited frequently as a specialist to present lectures at international conferences. He was one of the early EPR researchers invited by the People?s Republic of China as a foreign expert on EPR in 1985
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]nline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords