alexa Towards A Functional Cure Of HIV Infection Using A Novel CD4-based Chimeric Antigen Receptor | 23583
ISSN: 1948-5964

Journal of Antivirals & Antiretrovirals
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

4th World Congress on Virology

Barna Dey, Li Liu, Bhavik Patel, Mustafa H Ghanem, VirgilioBundoc, ZhiliZheng, Richard A Morgan, Steven A Rosenberg and Edward A Berger
ScientificTracks Abstracts: J Antivir Antiretrovir
DOI: 10.4172/1948-5964.S1.020
Abstract
Major research efforts are currently underway to achieve ?functional cure? of HIV whereby virus suppression is maintained in the absence of antiretroviral therapy. Cell-based therapiesare gaining momentum as a testable approach in this front. Following the clinical success of adoptive transfer of chimeric antigen-receptor (CAR)-modified T cells as a treatment for hematological cancers, we designed three CAR constructs with identical transmembranedomain and intracellular signaling domains linked to differentextracellular antigen-binding moietieswhich target highly conserved receptor-binding sites on HIV Env. The extracellular targeting moieties are derivatives of the primary receptor CD4,either alone (CD4 CAR) or attached to the 17b scFv (targeting the coreceptor binding site) via a long linker (35 aa; CD4-35-17b) or a short linker (10 aa; CD4-10- 17b).Our previous studies indicated that the corresponding soluble bifunctional protein with a long linker (CD4-35-17b) neutralized HIV with extreme potency and breadth, presumably due to simultaneous binding of both CD4 and 17b moieties to the same gp120 subunit; a protein with a linker too short for simultaneous binding (as in CD4-10-17b) showed weak potency. We compared the 3 CAR constructs to test alternative concepts on the relationships between molecular binding affinity and target cell killing potency. In our in vitro studies, peripheral blood CD8+ T cellstransduced with each CAR secreted IFN-γ upon Env engagement and killed Env+ target cells.Importantly, for the suppression of HIV-1 infection of PBMCs, the CD4-10-17b CAR showed highest potency, followed by the CD4-CAR and the CD4-35-17b CAR being less effective. This result supports a model whereby cell killing is optimal when the effector/target affinity is sufficiently low to enable serial triggering, as presumably is the case for the CD4-10-17b CAR. We also noted that the CD4 CAR rendered CCR5+ cells susceptible to HIV infection, an undesired activity not observed witheither of the CD4-17b CARs. Thus the novel CD4-10-17b CAR offers superior potency without the potentially deleterious effect of the CD4 CAR, for durable targeted cell killing to achieve a functional cure. Keywords: edible bird nest (EBN) extract, influenza virus, antiviral potential, MTT assay, HA, cytoskeleton structure
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7