Reach Us +44-1522-440391
Towards A Green Future: Bacterial Biomass Used For Feed | 49885
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Towards a green future: Bacterial biomass used for feed

Euro-Global Summit and Expo on Biomass

Subir Kumar Nandy, Budi Juliman Hidayat, Leander Petersen and Henrik Busch Larsen

Unibio A/S, Denmark

ScientificTracks Abstracts: J Fundam Renewable Energy Appl

DOI: 10.4172/2090-4541.C1.014

Demand for animal protein (meat) will increase due to the combined effects of population growth and increasing standards of living in the world. This will lead to stronger demand for traditional major sources of protein used in commercial livestock feeds. The supply of these proteins is limited and cannot be increased without e.g. resulting in land use changes or adding unsustainable pressure to ocean fish stock. Methylococcus capsulatus is a methanotroph that contains 70% protein when grown under aerobic conditions. The high content of protein makes M. capsulatus biomass attractive for use as feed material. Process development efforts have been made, resulting in the use of a U-Loop reactor for continuous production of biomass using M. capsulatus as the main population and three other bacteria in smaller quantities in the culture, utilizing methane from natural gas as the carbon source. In this paper we present the preliminary results of the operation of a pilot plant 100 L U-Loop reactor. All four bacteria are non-GMO and their use as feed material has been approved (EU Commission Regulation No 575/2011, Section 12.1.2). The environmental virtue of the process lies in the fact that it is able to exploit excess natural gas which will otherwise be vented and/or burned, producing carbon dioxide. Thus, the process paves the way for realizing a circular economy where waste is used to produce a useful material. The application of this process also releases land used for producing feed for other uses, as the same amount of protein can be produced using significantly smaller areas of land.

Subir Kumar Nandy is a Senior Fermentation Specialist and responsible for Unibio’s fermentation facilities at DTU. He has a PhD in Chemical Engineering from Indian Institute of Technology, Bombay in India, and did two postdoctoral works at the Chalmers University of Technology in Gothenburg, Sweden, and at the Technical University of Denmark (DTU). He has performed fermentation biomass composition analysis, kinetic modelling, fluxomics and other omics analysis, and used novel biological methods. He has teaching activity and supervised Bachelor/Diploma/Masters/PhD student works in these fields. He joined the Unibio team in January 2015 with responsibility for developing and improving Standard Operating Procedures as well as developing the optimal medium composition for running fermentations in the lab-scale fermentor and U-Loop. He is involved in most Unibio projects. He has more than ten years of experience in fermentation.

Email: [email protected]