alexa Towards Anti-virulence Drugs Targeting Disulfide Bond-forming Enzyme DsbA | 23349
ISSN: 2155-9597

Journal of Bacteriology & Parasitology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

2nd International Congress on Bacteriology & Infectious Diseases

Prem Lakshmanane
ScientificTracks Abstracts: J Bacteriol Parasitol
DOI: 10.4172/2155-9597.S1.006
Abstract
Current bactericidal antibiotics are losing their effectiveness against the rapidly growing drug resistant 'superbugs'. Novel strategies are therefore urgently needed to combat multi-drug resistant bacterial infection and to prolong the lifespan of existing antibiotics. The disulfide bond-forming enzyme DsbA is a master regulator of bacterial virulence and pathogenesis. DsbA has been identified as an attractive anti-virulence molecular target because it is not essential for survival of pathogenic bacteria, but its disruption attenuates virulence in a number of clinically relevant bacteria. DsbA enzymes are diverse that either partner with integral membrane protein DsbB or VKOR to catalyze disulfide bond formation. Structural analyses of a library of 15 well-characterized DsbA proteins from various pathogenic bacteria suggest four sub-classes (DsbAIa, Ib, IIa and IIb) on the basis of surface features. DsbAIa sub-class comprises enteric bacterial DsbAs that characteristically have a large groove on the catalytic surface. DsbAIb subclass covers a wide range of DsbAs from Gram-negative bacteria that has small, less conserved, surface exposed pockets on the catalytic surface. Both DsbAIa and Ib members also have a large non-catalytic protein interaction surface. In contrast, surface surrounding the catalytic site of DsbAs from Gram-positive bacteria, including mycobacteria (DsbA II) are charged and have relatively shallow groove. We provide information on druggability of DsbA enzymes in the context of available binding peptides, and evolutionary conservation across bacterial DsbAs.
Biography
Prem Lakshmanane earned his PhD in structural biology and biological chemistry from the Weizmann Institute of Science in 2005. He pursued his postdoctoral research at the Sanford-Burnham Medical Research Institute. He is currently a senior research fellow at the University of Queensland. His research interests are approaches to combat drug resistant bacteria and to prevent the spread of drug-resistant plasmids.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7