alexa Treatment Of Biomass Residues To Produce Renewable Energy | 69787
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

4th World Congress and Expo on Recycling

Awf Al-Kassir
University of Extremadura, Spain
Posters & Accepted Abstracts: Int J Waste Resour
DOI: 10.4172/2252-5211-C1-006
Abstract
Biomass residues with more than 50% moisture content cause operational problems of combustors and reduce efficiency. Also, higher moisture contents lead to high CO and volatile organic compound emissions, mainly in smaller combustion units. Using dry biomass in a combustion systems results in lower emissions, reduced fuel use, improved boiler efficiency, increased heat production, reduced ancillary power requirements. The main purpose of the drying process is to reduce moisture content of the wet biomass. The choice of dryers will depend on the characteristics of the wet biomass material, the source of heat and the integration options available. The heat sources and temperatures for drying are important considerations. Flue gas is an efficient source of the heat. A method of calculation for thermal drying has been developed for the design of a direct contact dryer for biomass residues. A heat source of dryer will be flue gasses of the existing biomass boiler. The model input data are inlet temperatures and the flow rates of gas and biomass residues. An experimental facility has been developed and built in order to measure the temperatures inside the dryer along time. The results obtained indicated that an optimal dryer length of approximately 0.95 m has been calculated for an inner diameter of 0.13 m. The gasification of biomass for energy production purpose leads to minor CO2 emissions. In the gasification experiments of biomass 10 g of wine shoot was treated at three temperatures (650, 750 & 800ºC) in air atmosphere. Once the optimal temperature (800ºC) was selected, the wine shoot remnants were gasified by using an air stream of 200 ml/min and different residence times (8 and 50 minutes, respectively). In our case, the total amount of wine shoots produced yearly in Extremadura reaches 87725 Tons, so a volume of 1.91*107 m3 of H2 may be obtained annually. Multiplying by its Lower Heating Value, yields to H2 energy potential of 205766 GJ per year. Keeping in mind Doubling's Law, a total power of 30.01 MW could be obtained. Considering a yield of 21% for the solid phase obtained in the gasification process. The energy potential of the carbons could be obtained by multiplying by its HHV.
Biography

Email: [email protected]

image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7