alexa Understanding Differential Selectivity Of Arrestins Toward The Phosphorylation State Of G-proteincoupled Receptors
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

9th International Conference on Structural Biology
September 18-20, 2017 Zurich, Switzerland

Ozge Sensoy
Istanbul Medipol University, Turkey
ScientificTracks Abstracts: J Proteomics Bioinform
DOI: 10.4172/0974-276X-C1-100
Abstract
Arrestins (Arrs) are a family of four proteins (Arr1- 4) which mediate G-protein-coupled receptor (GPCR) desensitization and internalization by coupling to active and phosphorylated receptor. Recently, they have also been shown to mediate GPCR-independent signaling pathways. The specific functions of Arrs (desensitization vs. G-protein-independent signaling) can be regulated by differential phosphorylation of the receptor, which is known as the phosphorylation barcode. The molecular mechanism responsible for formation of a high-affinity complex between an Arr subtype and a GPCR having a certain phosphorylation pattern remains elusive but is crucial for directing the subtype towards a specific functional role, and hence paves the way for development of safer therapeutics with fewer side-effects. As a first step in that direction, we have started with elucidating the activation mechanism of Arr subtypes by carrying out comparative molecular dynamics (MD) studies of the two members of the family, namely Arr1 and Arr3, which exhibit the largest differences in terms of phosphorylation selectivity. In addition, we also modeled and simulated Arr1-R175E mutant, which is known to be constitutively active, and compared it to Arr1 and Arr3 to detect activation-related rearrangements. We found novel structural elements that had not been considered before as determinants for activation and can be targeted with drugs for functional modulation. The emerging model also proposes that activation of Arr1-R175E is connected to perturbation of the well-known region, namely, the polarcore, whereas no changes were observed in that region in Arr3 despite the presence of other activation-related changes. With that, we could propose a structural model to explain the molecular mechanism responsible for markedly reduced selectivity of Arr3 towards phosphorylated GPCRs. Finally, knowledge achieved in this study can also be utilized to modulate Arr binding to GPCRs under disease conditions such as otozomal dominant disorders and congestive heart failure.
Biography

Ozge Sensoy being a Computational Biophysicist, her research has focused on understanding molecular mechanisms of biologically important problems and providing mechanistic insight at the molecular level. In particular, she has been working with GPCRs and their interacting partners which are responsible for cellular signaling. She works in close collaboration with medicinal chemists to direct them for effective molecular designs. In addition, she is also responsible for testing the efficacy of these molecules in silico before transferring them to either in vitro or in vivo studies. Recently, she has been awarded an international COST (European Cooperation in Science and Technology) grant which is based on developing heterobivalent molecules capable of binding more than one target for treatment of symptoms of Parkinson’s disease.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords