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Introduction
In living organisms, numerous proteins are utilized to carry out 

important cellular functions. Proteins make up the physical structure 
of the cell to support and maintain the cell shape, and are involved in 
cellular signaling and transduction, where they can transmit both intra- 
and extra- cellular information. Other proteins act as catalyst for inert 
bio-molecules, to facilitate essential biochemical reactions, such as 
DNA repair and replication. Moreover, antibodies, or immunoglobulin, 
are a type of protein that is responsible for the defense of the organism 
against foreign substances. Proteins also play an important role in the 
synthesis of other proteins, forming a complex regulatory network that 
controls the cellular machinery [1].

A protein is basically a linear chain of amino acids folded into a 
three-dimensional (3D) structure. The 3D conformation of the protein 
plays an important role in determining the functions of the protein. 
For example, a protein that acts as a transcription factor is shaped 
so that it will only recognize a specific pattern of DNA sequence on 
which it will bind itself to initiate the transcription of RNA. The zinc 
fingers are one such family of proteins that often act as transcription 
factors, which recognize specific patterns of DNA sequences through 
the different amino acids found on the finger-like structure [2]. The 
interactions between antibodies and antigens have also been shown to 
be based on the shapes of the antibody and antigen involved, rather 
than their chemical properties [3]. Therefore, methods for discovering 
the 3D protein structures and the understanding of the structure-
function relationship are instrumental to functional prediction of newly 
discovered proteins, and the design of novel proteins for specific tasks.

The structures of proteins are often described in four categories 
with increasing complexity:

• Primary Structure: The amino acid sequence of the protein.

• Secondary Structure: Local folding patterns that are formed due to
hydrogen bonding between the N-H and C=O groups. Commonly
observed patterns include α helix and β sheet.

• Tertiary Structure: Global folding structure of the amino acid
chain. Each protein typically has a native conformation, which is
the structure that the protein is typically found in, but can also
take other folding structures depending on the condition. Many

different forces come together to influence the tertiary structure of 
the protein, but one important observation is that the hydrophobic 
parts of the protein is typically hidden in the core of the secondary 
structure.

• Quaternary Structure: A superstructure formed by the interaction of
multiple proteins.

Typically, the 3D shape of the protein can be determined by X-ray
crystallography, and more recently, nuclear magnetic resonance (NMR) 
spectroscopy, which also determines the local secondary structures 
manifested within the 3D structure [4]. However, both methods have 
proven to be expensive and time-consuming to perform. Therefore, 
efficient methods for preliminary prediction of the protein structure 
are needed before either X-ray crystallography or NMR is used. The 
shape of a protein, as it turns out, is determined by its unique amino 
acid sequence, as can be seen from the denatured protein sequence 
quickly returning to its native state when the denaturing agents have 
been removed. Thus, constructing computational models based on 
the amino acid sequences of proteins to predict their 3D structures, 
and furthermore, their functions, has become an important subject 
of research. Additionally, it is well known that protein molecules can 
take on multiple secondary and tertiary structures under different 
conditions, rather than a single structure [5,6]. Therefore, it is also of 
interest to discover not only the most likely conformation, but also a 
set of possible conformations for the given amino acid sequence [7,8].

Existing works

However, even when considering only the most likely 3D structure 
of a protein, the problem of predicting it from the amino acid sequence 
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is still a difficult one. Proteins are complex molecules that contain 
hundreds of thousands of atoms, and many different forces come 
together to determine the final shapes of proteins. Methods such as 
molecular simulation would also prove to be time consuming, and are 
typically limited to proteins of certain amino acid length, even when 
simulated on super computers. One approach is by divide-and-conquer, 
where the local problem of secondary structure prediction is tackled 
first, and then using the predicted secondary structure information 
to assist in the prediction of the tertiary structure [9]. In [10], one of 
the earliest secondary structure prediction algorithms was proposed. 
The Chou-Fasman Algorithm was empirically-based, utilizing the 
observed frequencies of occurrence of the different amino acids for the 
different types of secondary structures. The probabilities are then used 
to evaluate a given amino acid being favoring, breaking, or indifferent 
to the different secondary structures. Other algorithms such as [11,12] 
also employ point statistics for prediction, mostly due to the limited 
amount of known secondary structure data. 

The second generation of secondary structure prediction methods 
was able to achieve greater accuracy by drawing from a larger set of 
proteins in the databases with known secondary structures, discovered 
through X-ray crystallography and NMR spectroscopy. Moreover, these 
algorithms make use of segment statistics, where a window of amino 
acids is used to make the prediction, instead of only point statistics as 
in the first generation algorithms. In [13], the secondary structure of an 
amino acid is predicted by computing the mutual information between 
the secondary structure, and a window of amino acids flanking the 
given amino acid. Other second generation algorithms can be found 
based on statistical models [14,15], sequence patterns [16,17], neural 
networks [18,19], and graph theory [20].

Currently, there are two main categories of protein secondary 
structure prediction methods: multiple-sequence and single-sequence 
methods. Multiple-sequence methods make use of multiple sequence 
alignment with homologous sequences having known secondary 
structures found in the databases. These methods are based on the 
notion that if the amino acid sequences are close evolutionarily, their 
secondary structures should also bear close similarities [21]. The PHD 
algorithm [22], first introduced this idea, and is still by far one of the 
most accurate algorithms available.

The PHD algorithm first performs a database search for possible 
homologous proteins, then aligns and filters the sequences to decide 
on the most likely homologues, and finally feeds the sequences and 
alignment profile to a feed-forward neural network for secondary 
structure prediction. Other multiple-sequence algorithms include [23-
25].

While the multiple-sequence approach to protein secondary 
structure prediction has achieved the highest prediction accuracy, 
not all proteins are suitable for this method. Even with the number of 
proteins with known secondary structure steadily increasing, there are 
still many proteins with no close homologues in the databases. Although 
one can simply choose the closest possible proteins in the database, 
there is no guarantee that any meaningful result can be obtained. In 
this case, using the single-sequence approach becomes necessary. 
Some recent single-sequence methods include BSPSS [26] and IPSSP 
[27]. In [28], the N-best algorithm is used to obtain a set of top scoring 
secondary structure predictions. In each of the above algorithms, the 
lengths of the secondary structure segments are also considered. The 
secondary structure segment, or simply segment, in [26-28] and in this 
paper is defined as a sequence of consecutive secondary structures of 
the same type. The conformation of a protein can be broken down into 

many segments. The hidden semi-Markov model is used to model the 
uncertainty related to the length of each segment.

In the existing approaches, the amino acid sequence is processed 
sequentially from left to right, predicting whether the secondary 
structure of the current amino acid extends the most recent segment, 
or begins a new secondary structure of a different type. In these 
approaches, the score of a conformation up to the current amino acid 
position is given by the combinations of secondary structure segments 
and their length in this particular conformation. The contribution of the 
current amino acid to the scores of the different possible conformations 
generated will depend on the length and type of the final segment, i.e., 
the current observed amino acid is assumed to be the ending position 
or the starting position of the final segment. However, this assumption 
is not entirely correct, since the secondary structure of the current 
amino acid can also be located within a longer secondary structure 
segment, and the former assumption can cause a possible conformation 
to be prematurely discarded due to a mismatched segment length. In 
this work, we use a deterministic sequential sampling approach to 
obtain a set of possible conformations. The corresponding secondary 
structure of an amino acid is determined by a window of flanking 
amino acids. Furthermore, when processing the current amino acid, 
instead of terminating the latest segment at the current position, we 
will enumerate all possible conformations within the given window, 
and take a weighted average to determine the most likely secondary 
structure assignment. We will show through numerical experiments 
that the proposed approach can obtain better prediction accuracy on 
a set of proteins chosen based on their low similarity to one another.

The remainder of the paper is organized as follows. In Section 2, we 
present the signal model for the single-sequence secondary structure 
prediction problem. In Section 3, we derive the proposed sequential 
sampling algorithm for solving the problem. In Section 4, we present 
numerical results using proteins with low homology scores to known 
proteins in the databases. Section 5 concludes the paper. 

Signal Model
Let us denote the amino acid sequence of length T as r ∆{r1, r2, …

rT} g, where rt is the t-th amino acid in the sequence, and takes value 
from the 20 proteinogenic amino acids used to construct proteins. Let 
the sequence of secondary structure types associated with the amino 
acid sequence be denoted as s ∆{s1, s2, …sT}, where st is the secondary 
structure type of the amino acid rt.

The types of secondary structures are defined by the hydrogen 
bonds formed between the amino acids [1]. According to the Dictionary 
of Protein Secondary Structure (DSSP), the major secondary structure 
types include: G (3-turn helix), H (4-turn helix), I (5-turn helix), E (beta 
sheet), B (beta bridge), and S (bend). For simplicity of modeling, these 
structures are often grouped together to form larger class assignments. 
In our work, we take the convention of 3-class assignments, i.e., H 
(α-helix), E (β-strand), and L (loop), i.e., st ∈ {H,E,L}.

Due to the way the atoms are bonded in a given secondary 
structure, each of the three structures also appear in an amino acid 
sequence with minimum consecutive length requirements. For an 
®-helix segment, the minimum length is 5 consecutive amino acids; 
for a β-strand segment, the minimum length is 3; and for a loop, the 
minimum length is 1. For example, the secondary structure sequence 
s = {H,H,H,H,H,H,L,L,E,E,E} is a valid secondary structure with 3 
segments (1 segment of H with length 6, 1 segment of L with length 2, 
and 1 segment of E with length 3) for a protein of 11 amino acids long; 
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whereas s = {H,H,H,H,L,L,L,L,E,E,E} is not a valid sequence since the 
first H segment is only of length 4.

In this work, we model the relationship between the amino acid 
sequence and the corresponding sequence of secondary structure 
assignments using a state space model. In particular, the state 
sequence is a sequence of secondary structures, and the corresponding 
observations are windows of amino acids taken from the given amino 
acid sequence. Given the known amino acid sequence r, to predict 
the corresponding secondary structure sequence s, we would like to 
compute the probability p(s|Y ), where Y ∆ 1 2{ , , , }Ty y y , and ty  is a 
window of amino acids flanking the t-th amino acid, rt. For a chosen 
window length of 2w + 1, the observation for the state st is ty = {rt−w, 
rt−w+1, , rt−w-1, rt+w}.

As we have discussed previously, to predict the secondary structure 
of an amino acid at each step, instead of assuming that the latest 
secondary structure segment with the current amino acid, we would 
like to consider all the possible segment lengths for the latest secondary 
structure segment, and all possible subsequent configurations that make 
up the rest of the window. For example, suppose that we have a window 
of amino acids 7y  = {r4, r5,  , r10}, based on which we are trying to 
predict the secondary structure type for the 7th amino acid in r, or, the 
4th amino acid within this window, and that we have already predicted 
the secondary structures of the first 6 amino acids, s1 to s6. Suppose 
further that all of the first 6 amino acids have the β-strand structure, 
and that we want to find the probability of s7 also being E given the 
observation 7y . In both BSPSS [26] and IPSSP [27], this predicted 
segment of β-strands would be assumed to have a total length of 7, and 
the distribution of amino acids in a β -strand segment of length 7 would 
be used to compute the score of this particular extension. However, 
the length of this segment of β -strand could in fact be longer than 7 
amino acids long, and the distribution of amino acids in a β -strand 
segment of length 7 is different from the distribution of amino acids in 
β -strand segment of any other lengths. Furthermore, since the window 
in this case extends past the current amino acid by 3 positions, and the 
β -strand has already reached its required minimum length, a segment 
of different secondary structure type can also begin in s8, s9, or s10. To 
account for all of these different possibilities, we would like to take a 
weighted average over the probabilities of all the allowed configurations 
of secondary structures in the window.

Let us denote su 
∆ {s1, s2, , su} and su:v 

∆ {su, su+1, …, 
sv}. Figure 1 shows some possible configurations in s8:10 where 
2w +1 = 7 and s6 = {E,E,E,E,E,E}. In Figure 1 (a)-(c), three possible 
configurations of s8:10 are shown for the case of s7 = E. In Figure 1(a), 
the β-strand segment extends past the range of the window until s11, 
therefore, we have s8:10 = {E,E,E}. For Figure 1(b), we also have s8:10 = 
{E,E,E}. However, as we can see from the possible conformations outside 
of the current window, the β-strand segment in (b) is longer than the 
segment in (a) by 1 amino acid. When computing the scores for these 
two different possible conformations, we would like to use the amino 
acid distribution in a β-strand segment of length 11 for (a), and β-strand 
segment of length 12 for (b); whereas in previous works, both of these 
possibilities would use the segment length of 11 when computing the 
scores. To differentiate between (a) and (b), we need indicator variables 
to denote the location of a secondary structure within its secondary 
structure segment, and the length of that segment, and we denote these 
as ρi and µi, respectively. Thus, for Figure 1(a), we have ρ10 = 10 and µ10 
= 11, and for Figure 1(b), we have ρ10 = 10 and µ10 = 12.

In Figure 1(c), the β-strand segment terminates at s8, and is followed 
by an α-helix segment of length 5, which extends beyond the boundary 

of the current window. For this example, s8:10 = {E,H,H}, ρ10 = 2 and µ10 
= 5. Note from these examples, we do not need a length indicator for the 
segment that st−w belongs to, since we have already estimated st−1. If its 
segment terminates within st−w:t+w, that information is contained in ρt−w 
and st−w:t+w. If the segment terminates outside of st−w:t+w, then the segment 
length is given by µt+w. Also note that since there is no restriction on the 
length of a segment other than that it should be less than the length of 
the given amino acid sequence, we typically upper bound it with the 
maximum length of a segment observed in the training dataset.

Inference problem

From the discussions above, we can summarize the single-sequence 
protein secondary structure prediction problem as follows. Given the 
observations Y∆ 1 2{ , , , }Ty y y , which are windows of amino acids 
obtained from the amino acid sequence of a protein, r ∆ {r1, r2,  , 
rT}, we would like to predict the secondary structure sequence s ∆ {s1, 
s2,  , sT}, of the protein. The proposed algorithm will obtain a set of 
highest scoring solutions. These solutions can either be used to reach 
a consensus on the secondary structure, or be used to represent the 
possible conformations a protein can take under different situations. 
In the next section, we will derive the algorithm to solve the protein 
secondary structure prediction problem.

Protein Secondary Structure Prediction Algorithm
In this section, we first give a brief overview of the deterministic 

sequential sampling method. We then derive the protein secondary 
structure prediction algorithm to obtain a set of conformations with 
high scores.

Deterministic sequential sampling

Let us consider the following dynamic model

initial state model: p(s1),                                                 	              (1)

state transition model: p(st | st−1),		  1t∀ ≥ ,                   (2)

measurement model: p( ty | st),		  1t∀ ≥ ,                    (3)

where st and ty  are the state and the observation at time t, respectively. 
At time t, we want to make an online inference of the states st = 
(s1, , st) based on the observation Yt = ( 1y ,, ty ). Similar to 
traditional sequential Monte Carlo (SMC) methods [29], we assume 
that we have at time t − 1 a set of particles and their associated 
weights ( ) ( )

1 1{( , ), 1, , }k k
t ts w k K− − =  properly weighted with respect to 

the posterior distribution p( 1ts − | 1tY − ). In the protein secondary 
structure prediction problem, at each time step, the possible secondary 
structure that the current amino acid can take is limited to a finite set. 
Specifically, the secondary structure of the current amino acid is from 
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Figure 1: Some possible secondary structure configurations for s8:10 for s7 = E.
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the set {H,E,L }if the most recent segment has satisfied the minimum 
length requirement, and it is the same type of secondary structure as the 
most recent segment if the minimum length is not met. Since the set of 
possible secondary structure is finite, this naturally leads us to consider 
the deterministic approach where we enumerate all possible extensions 
for each sample at step t.

The deterministic sampling approach was developed in [30,31], and 
extended to handle Markov state processes. For each particle ( )

1
k

ts − , k = 1, 
, K, we consider all Kext possible extensions, and perform a selection 
step to keep only K of the K ×  Kext particles to avoid an exponential 
growth of the number of particles. Also, in this context there is no 
reason to keep particles that represent the same path, thus in this 
regard; the deterministic sequential sampling method is also different 
from the traditional resampling scheme. There exist various selection 
schemes, and in this work, we adopt the simple scheme of keeping only 
the K particles with the highest weights while discarding the remaining 
particles.

Given a set of particles and associated weights 
( ) ( )

1 1{( , ), 1, , }k k
t ts w k K− − =   that does not contain duplicate paths; we can 

obtain the posterior distribution of 1ts −  as the following,

( ) ( )( ) ( )
1 1 11 1

1 1

1ˆ ,− − −− −
− =

= −∑ II
k

k k
t t tt t

t k

p s Y w s s
W                                  (4)

where 
( )

1 11
,

K k
t tk

W W− −=
=∑  and II (.) is the indicator function such that 

II(x) = 1 for x=0 and II (x)=0 otherwise. From Bayes’ theorem we have 
( ) , 1 1( ) ( )t t t t t t tp s Y p y s Y p s Yα − −  

( ), 1 1 1 1 1( , ) ( ).t t t t t ttp y s Y p y s Y p s Yα − − − − − 		                (5)

From this relationship, we can approximate the posterior 
distribution of st as   

( )( )( , )
1

1 1

1ˆ ( ) [ , ] ,II
extKK

kext k t
t t t t itext

t k i

p s Y w s s
W

θ−
= =

= −∑∑
                            (6)

where ( )
1 ,k

its θ−
 
  represents the vector obtained by appending the 

element θi to the vector ( )
1

k
ts − , and

ext
tW = 

( , )
,

k i
k i tw∑  with

( , )k i
tw α ( )

1
k

tw p− 1 1( , , )k
t t i t ty s s Yθ − −= p 1 1( , ).k

t i t ts s Yθ − −=   	                 (7)

Note that during the initialization steps, if the total number of 
particles obtained after enumerating all possible extensions from all 
particles from 1t −  is less than the maximum number allowed K, all 
enumerated particles are retained with weights computed as stated 
above.       

Deterministic sequential sampling protein secondary 
structure prediction algorithm

For system states up to the t-th amino acid, ts , corresponding 
observations tY , where tY  ∆

= 1 2{ , , , },ty y y  we have the following 
according to (5)

( )t tp s Y α 1( , )t t tp y s Y − p 1( )t ts Y −

α 1( , )t t tp y s Y − p 1 1 1 1( , ) ( )t t t t ts s Y p s Y− − − −

α 1 1 1 1( ) ( , ) ( ).t t t t t t tp y s p s s y p s Y− − − −                            (8)

Thus at each step, the recursion in (8) involves the computation of 
the probabilities ( )t tp y s  and 1 1( , )t t tp s s y− − .

The distribution 

1,( )t t tp y s s− =
1: , ,( )t t w t w t ws ρ µ+ + + + ∈Λ
∑ : , 1: , ,( , )t t w t t t w t w t w t wp y s s ρ ρ µ− + + − + + ×

               1: , , : ,( )t t w t w t w t w t t wp s sρ µ ρ+ + + + − −

=   1: , ,( )t t w t w t ws ρ µ+ + + + ∈Λ
∑

 1: , , : ,( )t t w t w t w t w t t wp s sρ µ ρ+ + + + − − ×

,
( ),

i i i

t w

s i
i t w

p rρ µ

+

= −
∏ 				                  (9)

where Λ is the set of all allowed conformations of length w in the right-
half of the window given the left-half window :t w ts −  and ,t wρ −  and 

, ,i i isp ρ µ  ( )ir  is the frequency of observing the amino acid ir  at position 
iρ in an is  type secondary structure segment of length iµ .

Similar to the approaches taken in [26] and [28], the distribution of 
the amino acids are computed by training from a set of proteins with 
known secondary structure, which are chosen to have low sequence 
similarities from one another. The segments in these proteins are 
grouped according to their secondary structure type and the segment 
length to compute the amino acid frequencies. The probability 

: 1:( , , , , )t w t t t w t w t w t wp y s s ρ ρ µ− + + − + + is then constructed by selecting 
the appropriate columns according to the parameters : 1:, ,t w t t t ws s− + +  
and t wµ + . The transition probability 1: :( , , , )t t w t w t w t w t t wp s sρ µ ρ+ + + + − −  
can be computed similarly, by shifting a window of size 2 1w +  acrossthe 
proteins in the training dataset, and counting the number of occurrences 
of the different secondary structure transitions.   

To evaluate 1 1( , ),t t tp s s y− −  we can use the Bayes’ rule to obtain the 
following relationship:

1 1
1 1

1

( , )
( , )

( )
t t t

t t t
t

p s y s
p s s y

p y
− −

− −
−

=

α  1 1 1( , ) ( ).t t t t tp y s s p s s− − − 			              (10)

The distribution 1 1( , )t t tp y s s− −  can be computed similarly to 
(9), with the exception that it is averaged over possible right-half 
conformations of length 1,w−  instead of w, and is given as follows:

1 1( , )t t tp y s s− − =

1: 1, , 1( )t t w t w t ws ρ µ+ + − + + − ∈Λ
∑

1: 1, 1, 1 1: , 1( )t t w t w t w t w t t wp s sρ µ ρ+ + − + − + − − − − − ×
1

1

, ( ),µ

+ −

= − −
 i i i

t w

s p i
i t w

p r

	

						                    (11)

For 1( ),t tp s s −  and window length of  2 1,w +  the distribution can be 
evaluated by the w−th order Markov chain

1 : 1( ) ( ).t t t t w tp s s p s s− − −=                                                                            (12)

Once again, this distribution can be evaluated using the counting 
process from the training dataset.

Deterministic Sequential Sampling Estimator: We will now 
outline the deterministic sequential sampling algorithm for protein 
secondary structure prediction. Suppose at time ,t  we have a set of 
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weighted samples  ( ){ }( ) ( )
1 1, , 1, , ,k k

t ts w k K− − =   properly weighted with 
respect to 1 1( ),t tp s Y− −  then, as in (4), ( )t tp s Y  can be approximated by

  
( ) ( )

( )( , ) ( )
1

1

1ˆ ( ) ( [ , ]),θ

θ

θ−
= ∈Θ

= −∑ ∑ II
k k

K
kext k k

t t t t text
t k

p s Y w s s
W  	              (13)

Where ( )kΘ  is the set of all possible secondary structures that the 
amino acid, ,tr  can assume. If the latest segment of secondary structure 
has exceeded the minimum length required, then ( )kΘ { , , }.H E L=  
If the minimum length has not been reached, ( )kΘ  can take only the 
same secondary structure type as the latest segment. The weight update 
formula is then given by  

( , )k
tw θ

α
( ) ( ) ( )

1 1( , )k k k
t tt tw p y s s θ− − = ( )( )

11( , ),kk
t ttp s s yθ −−=

                                    (14) 

Where ( ) ( )
1( , )k k

t ttp y s s θ− =  is evaluated from (9), and 
( )( )

11( , )kk
t ttp s s yθ −−=  from (10). In the selection step, only the K 

particles with the highest weights are retained to avoid the exponential 
explosion of particles.

We now give the deterministic sequential sampling protein 
secondary structure inference algorithm for predicting a set of   K most 
likely conformations and their scores:

Algorithm 1 [Deterministic sequential sampling protein secondary 
structure prediction algorithm]
• Initialization: Use the first γ amino acids to enumerate all possible 

particles, where γ  is the largest number such that the total number of 
particles enumerated from the γ  amino acids does not exceed K , and 
compute their weights. 

• Update: For 1, 2,t γ γ= + + 

−  For 1,2,k = 

*Find the set ( )kΘ , the possible secondary structure extensions for particle k .

*Enumerate all possible particle extensions, 
( ) ( )( , ) ( ) ( ) ( )

1[ , ], .
k kk k k k

t ts sθ θ θ−= ∈Θ

* ( )kθ∀
( ) ,k∈Θ compute the weights 

( )( , )kk
tw θ  according to                  (14).   

− Select and preserve K distinct sample streams ( ){ , 1, , }k
ts k K= 

with the highest importance weights ( ){ , 1, , }k
tw k K= 

 from the set 
( ) ( )( , ) , ( ) ( ){ , , 1, , }.
k kk k k k

t ts w k Kθ θ θ= ∈Θ

Viterbi algorithm for most probable conformation

In the previous section, we have presented the deterministic 
sequential sampling algorithm to obtain a set of suboptimal secondary 
structure conformations with high scores to describe the possible 
conformations that a protein can take under various circumstances. 
However, typically, we are also interested in the most likely secondary 
structure given the amino acid sequence. As can be seen from Section 
2, the system model is basically on of a hidden Markov model (HMM), 
and the most likely secondary structure is simply the most probable state 
sequence of the state model given the amino acid sequence r. For an 
HMM with no unknown parameters, the optimal path can be obtained 
through the Viterbi algorithm. Therefore, we would like to consider the 
optimal path found by using the Viterbi algorithm, and compare it with 
those found using the deterministic sequential sampling algorithm 
with weighted majority voting. For each secondary structure type st at 
position t, using (8), the Viterbi algorithm computes the following: 

: 1, : 1 )( ,t w t t t w t tf s s− − − −  =  1: 1) : : 1 1( ( ) ( , )t w t t t w t t t w t ts p y s p s s yδ − − − − − − −

              : 1( )t w tsδ − − =
: : 1

: 1
( , ).max t w t t w t t

t w t
f s s− − −

− −                                  (15)

Experimental Results
We have implemented the proposed protein secondary structure 

prediction algorithm and evaluated its performance on real data. The real 
dataset we used in our experiment is a set of proteins with low sequence 
homology chosen from the Protein Data Bank (PDB). The proteins in 
this dataset are chosen so that the length-dependent threshold between 
any pair of proteins does not exceed the length-dependent threshold as 
given in [32], and the dataset consists of a total of 2810 proteins.

In the experiments, similar to what is done in [28], we first removed 
from the dataset proteins that have lengths shorter than 35 amino 
acids long. Furthermore, we removed proteins that contain secondary 
structure segments over 35 amino acids long. Such pruning is to limit 
the number of possible conformations in 1:t w t ws + − +  that we have to 
average over when evaluating (9). The low frequencies in which these 
segments occur also make the accurate estimation of their distribution 
difficult. The resulting size of the dataset after these filters have been 
applied is 2661.

Since the secondary structures for these proteins obtained from 
PDB come in 8 DSSP secondary structure types, we follow the “CK” 
mapping used in [28] and [33]. In the “CK” mapping, H is mapped to H, 
E is mapped to E, and all other secondary structure types are mapped to 
L. Also H segments shorter than 5 and E segments shorter than 3 amino 
acids are mapped to L as well. 

The metric used to evaluate the performance is the three-state-per-
residue accuracy, or the Q3 metric [34]. The Q3 metric is computed by 
dividing the total number of correctly predicted secondary structure in 
the dataset, by the total number of amino acids present in the dataset, 
i.e.,

1
3

1

,

L
ll

L
ll

Q
N

ψ∆
=

=

=
∑
∑                                    		                                (16)

where Nl is the number of amino acids in the l-th protein, and lψ is the 
number of correctly predicted secondary structure in the l-th protein.

To evaluate the performance of the algorithms, we use the leave-one-
out approach. Each time we will remove one protein from the dataset, 
and the remaining proteins are used to compute the distributions used 
in (9) and (10). Using the estimated parameters in the deterministic 
sequential sampling algorithm, we predict the secondary structures of 
the protein that was left out, and compare the result with the known 
secondary structures obtained from PDB. This process is repeated for 
all other proteins in the dataset, and the aggregate results are used to 
compute the Q3measure.

Performance results on PDB dataset: The leave-one-out analysis 
is performed on the PDB dataset using the deterministic sequential 
sampling algorithm proposed in this paper, and the modified stack 
decoder proposed in [28]. For the deterministic sequential sampling 
algorithm, the window size used was 2w + 1 = 11, and for both algorithms 
a total of N = 500 particles/size of N list is kept at each iteration, and 
the highest scoring M = 100 candidates are combined using weighted 
majority voting with their scores to obtain a single secondary structure 
prediction for each algorithm. The weighted majority voting is done 
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at each amino acid location, by adding up the weights for the same 
secondary structure type, and choosing the secondary structure type 
with the highest total weight as the consensus. The Q3 measures are 
shown in Table 1, with Qα, Qβ, and QL being the individual secondary 
structure type prediction accuracy for α- helix, β- strand, and loop, 
respectively.

As we can see from Table 1, both the deterministic sequential 
sampling algorithm and the modified stack decoder were able to achieve 
better performance through weighted majority voting, than by simply 
considering the candidate conformation with the highest weight. This 
indicates that the most probable path does not necessarily result in 
the most accurate secondary structure prediction. These predictions 
are made based on algorithms which are trained using datasets that 
consist of proteins with low similarity scores. Since these training 
captures the overall averaged statistical behavior, profiles of individual 
proteins may still deviate greatly from these averaged distributions. As 
these experiments show, averaging over a set of generated secondary 
structures can improve the actual performance compared to the most 
likely structure.

Moreover, the deterministic sequential sampling algorithm is 
shown to have better performance than that of the modified stack 
decoder. Upon closer inspection, we can see that both algorithms 
generated different lists of likely secondary structures. During the 
secondary structure extension process, while computing the scores for 
each possible extension, the proposed algorithm does not terminate 
the latest segment with the current amino acid. This helped the 
deterministic sequential sampling algorithm to keep more of the better 
candidates during the pruning process. Also, while the deterministic 
sequential sampling algorithm has poorer prediction accuracy for β- 
strands, the overall accuracy is compensated by the higher accuracy for 
loops, which accounts for about 46% of the total secondary structures.

Window size and particle number:  In the following experiments, 
we compare the prediction accuracy of the proposed deterministic 
sequential sampling algorithm under different window sizes and 
different particle sizes. In Table 2, we compared the Q3 performance and 
individual secondary structure type accuracy for window sizes 2w +1 = 
7, 2w +1 = 11, and 2w +1 = 15. For each case we use N = 500 particles, 

and the final M = 100 particles with the highest weights are used to 
obtain the consensus secondary structure through weighted majority 
voting.  

From Table 2, we can see that the deterministic sequential sampling 
algorithm with window size 2w+1 = 11 achieves the best performance, 
while at 2w+1 = 7 the performance is much worse than the other two 
window sizes. The poor prediction performance of the smaller window 
size is due to the the inadequately captured statistical features of the 
secondary structure by the small window size. However, larger window 
sizes also pose problems as shown by the worse performance with 
window size of 15 compared to window size of 11. This is caused by 
the inaccurate predictions of the two state transition probabilities in (9) 
and (11). When large window sizes are chosen, the number of unique 
transitions also increases, which can lead to many transitions without 
sufficient number of observations, thus resulting in poor estimation of 
the transition probabilities.

Next, we perform three experiments; each has window length of 
2w+1 = 11, but using different total number of particles and the number 
of top candidates used for weighted majority voting. The results in Table 
3 show that the performance of the deterministic sequential sampling 
algorithm can be improved by increasing the number of particles. 
However, the improvement does not seem to be very significant, as the 
overall Q3performance is only improved by 2% when the number of 
particles was doubled from 500 to 1000, showing that the deterministic 
sequential sampling algorithm is still robust when the number of 
particles used in the experiment is relatively small.

Conclusions
In this work, we have proposed a single-sequence, deterministic 

sequential sampling-based algorithm to find the most likely secondary 
structure conformation of a protein, and a set of suboptimal 
conformations to simulate the changing protein structure under 
different environments. The algorithm is based on a windowed-
observation hidden Markov model. While the enumeration of the 
states may seem more complex, we have improved upon the way 
each conformation is scored, by taking an average over the possible 
conformations within a window. One should take note that in our work, 
we have not included the effects from the in sequences of non-local 
amino acids in the sequence. To model the non-local in sequences, 
more available data than what is presently available is needed in order 
to accurately describe the interactions between amino acids that are 
far apart in terms of sequence distance. With more available data, a 
joint secondary and tertiary structure prediction may become a more 
feasible approach to the prediction of protein structure, and the HMM-
based approach presented in this work should lend itself very well with 
extensions to treat additional tertiary structure information.
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