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Introduction 
There is considerable interest in the real-time assessment of 

the microbial load in a sample. Outbreaks of food-and waterborne 
disease highlight the need for robust instrumentation that does not 
suffer from the need for prior outgrowth of target microbial cells. Any 
method that relies on cellular outgrowth prior to physic-chemical 
interrogation potentially suffers from differential growth kinetics of 
various cells in the original sample. In particular, the viable-but-not-
culturable phenomenon [1] constitutes a serious drawback for many 
current technologies used to assess bacterial loads in complex sample 
matrices that contain heterogeneous populations of cells where they no 
longer grow out on standard growth media. In addition, any outgrowth 
step necessarily increases the total sample analysis time, which can be 
critical in a variety of situations, e.g. diagnosis of bacterial meningitis, 
sterilization of medical implements, or the shipment of freshly packed 
produce to retail markets. 

At present, the determination [2] of total bacterial load is qualitative 
and largely relegated to the laboratory, with the main alternatives 
including direct microscopic examination of concentrated suspensions 
(> 107 cells/ml), PCR amplification of a range of genes, simple 
enzyme-based assays [3], and fluorescence measurements using DNA-
intercalating dyes (e.g. epifluorescence microscopy or flow cytometry). 
A cell-counting method that is broadly applicable to microbes, and 
applicable to a variety of sampling problems (thin films of aqueous 
cell suspensions, ice, soil, rock, food surfaces, medical implements, 
etc.), would be highly useful in guiding physical sampling efforts, 
decontamination protocols, forensic investigations, and medical assays 
where the real-time determination of total bacterial loads is needed. 

A variety of optical techniques have been applied to the detection 

and quantification of microbes, particularly involving scattering or 
spectroscopy. Simple light scattering (culture turbidity) in the visible 
region is the classical method for the determination of the concentration 
of cells in liquid suspension. Advances in instrumentation and data 
processing have enabled IR and Raman measurements on microbial 
cells [4-6], and commercial instruments (e.g. River Diagnostics and 
Brucker) are available for specific microbial identification based upon 
the comparison of ‘fingerprint’ regions in spectra with reference spectra 
in a database. However, prior outgrowth on manufacturer-specified 
media is required. Current commercial instruments, including field-
portable ones (e.g. Ocean Optics systems), are suitable for obtaining 
spectra of millimeter-sized colonies of cells that are visible to the eye, 
but not low numbers of cells. The addition of a microscope to the 
optical path of an instrument (as in a Raman microspectrometer) solves 
this problem, but renders the equipment more expensive and the high 
intensity excitation can photobleach the sample. 

Fluorescence methods provide the most sensitive optical 
detection of biomolecules. High fluorescence sensitivity, coupled 
with a short-collection-time requirement and the ability to monitor 
large areas/volumes continuously are very attractive for the in-
situ investigation of microbes in the environment. We developed a 
multiwavelength fluorescence instrument to distinguish live cells, 
dead cells, and endospores, based on the intrinsic fluorescence of a 
number of metabolites and protein cofactors [7-13]. Importantly, our 
approach does not rely on 260-280 nm excitations because this excites 
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aromatic amino acids, purines, and pyrimidines; these are ubiquitous 
in real-world samples. More than fifty years ago, it was noted that 
the fluorescence due to NAD[P]H decays upon cell death as the 
oxidized forms (NAD[P]+) accumulate [14,15]. Pyridine nucleotide 
fluorescence occurs at Ex 365 nm/Em 440 nm, with small contributions 
from other fluorophores. Bacterial sporulation is accompanied by the 
production of a distinctive, fluorescent calcium dipicolinate complex 
that is densely packed in the endospores [16]; this fluorescence (Ex 
635 nm/Em 770 nm) disappears as the compound is expelled when the 
spores germinate. Nonviable cells, those not respiring but maintaining 
some level of cellular integrity, exhibit fluorescence (Ex 590 nm/Em 
675 nm) from flavins, cytochromes and apo forms of porphyrins. We 
report field an intrinsic bacterial fluorescence detector that contains 
notable improvements (particularly field portability and improved 
detection limit) over our earlier instruments [7]. This methodology 
was specifically tailored for the determination of total cell counts, 
apportioned among live cells, dead cells, and endospores, in colonies 
in situ (i.e., without sample contact or the use of added reagents such 
as fluorescent dyes). Applications to several practical problems are 
presented to illustrate the capabilities of the detector. 

Methods 
Detection 

Over the past several years, we have developed a method and hand-
held prototype devices for the detection of microbial life on surfaces 
(e.g. foods, glass, plastics, cloth, stainless steel, etc.), in water/liquids 
[7,17-19]. This technology has been shown to have a sensitivity of 10-20 
cells/cm2 [cm3] in these conditions. These prototypes employ multiple 
intrinsic fluorescence markers and are based upon a patented multi-
wavelength intrinsic fluorescence methodology [12]. The method 
detects microbes using intrinsic fluorescence with signals from more 
than one emission wavelength arising from excitation with one or 
more wavelengths. This fluorescence is directly proportional to the 
concentration of the metabolite, e.g., RPN, or, equivalently, the number 
of ‘live’ (metabolizing) cells. Figure 1 shows the kinetics of fluorescent 
spore core components and cell metabolites with spore germination. 
Taken together, these can be used to distinguish viable cells from dead 
cells from spores [20]. 

To distinguish the presence of microbes from environmental 
interferences, we use adaptive algorithms [21] that are trained using 
data sets taken under standardized test conditions consisting of a 
variety of microbial environments and conditions for each optical 
instrument and sample presentation configuration. In particular, 
the Neyman-Pearson test receiver-operating characteristic [7] gives 

a probability of false alarm of 10-4 for a probability of detection of 
0.998. It is important to note that viable cells, dead cells, spores, and 
media can be distinguished by these methods [10,11,17]. Since we are 
measuring several fluorescence signatures whose ratios must fall within 
narrow physiological bounds, interference at any one of them can easily 
be detected and corrected. In particular, we note that other microbial 
components also fluoresce: bacteriochlorophylls, phycocyanins and 
phycoerythrins, siderophores such as pyoverdins and deferrioxamines, 
and some B-vitamins [22]. 

Identification 

The capture and concentration of microbial (bacterial, viral, fungal) 
pathogens and proteinaceous toxins from fluids occurs via molecular 
recognition: specific binding between the target and surface-tethered 
custom ligands [23,24] (Figure 2a). In brief, a peptide, polysaccharide, 
or other small biomolecule that is specific for the target pathogen 
is covalently tethered by an organic linker to a substrate surface. 
Concentration of the pathogen from fluids is a result of the capture of 
the microorganism by the surface-tethered ligand through a kinetically 
rapid interaction; captured pathogens are retained on the surface 
for possible reaction with other diagnostic reagents or subsequent 
detection with intrinsic fluorescence as described above. 

The technological innovation and benefits of this methodology are 
shown in Figure 2. They include: 1) faster binding kinetics which reduce 
assay times (tethered-ligands bind as much analyte in one minute as 
many antibodies bind from identical solutions in ca. 30 minutes, Figure 
2b); 2) improved retention of captured analyte during washing steps 
allows tethered-ligand surfaces to be used to concentrate analyte from 
solution (resulting in lower detection limits for assays, Figure 2c); 
3) lowered assay reagent costs; 4) small ligands have been shown to 
capture target analytes from complex solutions (including mud); 5) 
improved stability and less sensitive storage conditions (small molecule 
ligand surfaces have been shown to retain activity after storage for 
one year at room temperature); and 6) increased binding capacity (ca. 
10,000 tethered peptide ligands can occupy the same area or ‘footprint’ 
occupied by one antibody molecule adsorbed or chemically bound to a 
surface) on an optimally conjugated surface. 

We have shown [24] that an oligopeptide ligand, tethered to a glass 
chip, can be used to capture Staphylococcus aureus cells from aqueous 
solutions for mass spectrometric detection (detection limit <3 cfu/mL, 
equivalent to what was observed using a monoclonal antibody for cell 
capture). We have used (see below) this same tethered ligand to capture 
S. aureus cells from whole blood, with intrinsic fluorescence as the basis 
of S. aureus detection. 
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Figure 1: Kinetics of Bacillus megaterium Spore Germination in LB Media at 37ºC. DPNH is other reduced dipyridine nucleotides [20].
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Instrument 
Descriptions of this fluorescence instrument and its application to 

the determination of total microbial load are given in References [7,12]; 
hence, only a brief description is given here. Figure 3 shows a detection 
instrument for surfaces that was used in the studies described below. 
Excitation of the desired fluorescence which contains contributions 
from live cells, dead cells, and spores is provided by three interference-
filtered LED light sources (~10 nm FWHM). Assuming equal amounts 
of the three components (live cells/dead cells/spores), Table I shows 
these contributions to each excitation/emission pair we used, [7,12]. 
These light sources are amplitude-modulated at different frequencies 
[25]. All three fluorescence emissions can be observed simultaneously 
with a single photomultiplier detector and the individual fluorescence 
contributions separated by Fourier transformation, since the resultant 
fluorescence also has the same amplitude modulation as its excitation. 
This approach significantly narrows the noise bandwidth, which 
dramatically enhances the signal-to-noise ratio. Together with the use 
of a custom filter to reject excitation photons, this makes the instrument 
useful in detecting microbial populations that vary by up to nine orders 
of magnitude (limited by quenching when the cell density is too large). 
The total microbial load (and also the relative amounts of live cells, dead 
cells, and spores) is determined based on calibrations of the instrument 
with a variety of microbes (Table 1). 

The multiwavelength fluorescence instrument was calibrated using 
laboratory-prepared samples of Bacillus thuringiensis and Escherichia 
coli (reference strains available from the American Type Culture 
Collection, ATCC) containing known amounts of live cells, dead cells, 
and spores before field use. Although the instrument had been calibrated 
to compare data collected in the field with those collected in the 
laboratory, optically clear plastic-laminated samples of B. thuringiensis 
spores were also used to verify the instrument calibration immediately 
before and after measurements in the field. We also collected samples in 
the field, isolated pure bacterial strains by standard methods and used 

a mixture of these field-derived cells for further instrument calibration. 

Results and Discussion 
We have previously [17,18] used similar instruments and methods 

noted above to address issues involving microbial contamination 
(surface, water, air), as well as point-of-care diagnostics. Here we will 
discuss applications to life in extreme environments, disinfection of 
contact lenses, and the development of a point-of-care diagnostic for 
the detection of pathogens at ID50 levels in small amounts of fresh 
whole blood. 

Life in extreme environments 

Currently, there are no methods to determine the total microbial 
load on an abiotic substrate (e.g., rock) in real-time. This capability could 
allow in-situ microbial assessments in the field without the need for 
added reagents or physical contact with the microbial cells, and greatly 
enhance sampling efforts. We have used a hand-held, fluorescence 
detection device (Figure 3) for in-situ studies and demonstrated its 
applicability to sub-glacial microbial communities at sites in Palander, 
Svalbard, Norway, during AMASE 2008 (Arctic Mars Analog Svalbard 
Expedition) [26]. Such extreme environments may provide models for 
viable habitats for life elsewhere in the universe. 

While the fluorescence contributions of live cells, dead cells, and 
endospores to each of the emission channels (Table 1) were determined 
by calibration of two reference strains in the laboratory as described 
above, these were calibrated again after the expedition using Svalbard-
collected bacteria and the same rocks (after cleaving to expose fresh 
surfaces) that were investigated in-situ. This calibration was in good 
agreement with the prior one. For each site, measurements of the 
ice/snow surface were taken about every 1 cm using a small sterile 
shovel to remove the top layer until a rocky bottom was reached. No 
physical contact by the instrument was made with the section being 
measured. Site 1 was at the base of the ice cap and consisted of a gully, 
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approximately 10 cm of granular snow, and approximately 3.5 cm base 
ice on top of a rocky bottom while site 2 was near the top of the ice cap 
and had approximately 15 cm of granular snow, and approximately 32 
cm base ice before the rocky bottom. Figure 4 shows a picture of site 2. 
Rocks from the bottom of both sites were collected by aseptic methods 
and stored in sterile containers for transport to our laboratory. 

The excitation (Em) data collected at both sites had only very small 
635nm emission (Ex) values, which were within the measurement error. 
This meant that there were no endospores or non-viable cells detected. 
Furthermore, the measurements for 590 Ex and 365 Ex gave the same 
value for the live cell density within the error, 2X104 ± 6 X102 live cells/

cm2 for site 1 and 7.6 ± 0.08 X106 live cells/cm2 for site 2. A Bacillus sp. 
was cultured from a rock sample taken from site 2, but no fluorescence 
characteristic of endospores was detected on the rock. This was also 
verified by light microscopy of rock scrapings after staining for bacterial 
endospores. Bacteria isolated from site 2 were strains not capable of 
sporulating. Our fluorescence detector located thriving colonies of 
bacteria in a thin film of water at the ice-rock boundary in both sites, 
but not in the snow and ice above.

Disinfection of contact lenses 

The disinfection of contact lenses is essential to lens wearers, but 
determination of the efficacy of the various available protocols and 
products is difficult and time-consuming. Classical methods, such as 
microbial outgrowth, can not only prejudice the growth of specific 
species, but cannot detect the presence of microbes that are viable-
but-nonculturable [1]. We have developed a method and protocol to 
determine the total microbial load on contact lenses which distinguishes 
viable and nonviable cells and spores in real-time and to compare 
various disinfection procedures and products. This is described in 
detail elsewhere [27]. 

Acuvue™ (Johnson & Johnson Vision Care, Inc., 7500 Centurion 
Parkway, Jacksonville, FL 32256) contact lenses were chosen for 
investigation and were measured with the set-up shown in Figure 5 
using the intrinsic fluorescence instrument shown in Figure 3. Lenses 
were measured both before and after incubation with Pseudomonas 
aeruginosa (ATCC 10145). Lenses were then cleaned and disinfected 
with AMO Easy Rub™ (Abbott Medical Optics, Inc., 1700 East St. 
Andrew Place, Santa Ana, CA 92705-4933) and Alcon No Rub™ 
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Figure 3: Schematic diagram of the fluorescence instrument used in these 
studies.

Figure 4: Palander Ice Cap, Svalbard, Norway, site 2 having approximately 
15 cm granular snow on top and 32 cm base ice.

Excitation/Emission Contributions 
365 nm/440 nm 0.7 [live cells] + 0.15 [dead cells] + 0.15 [endospores] 
590 nm/675 nm 0.5 [live cells] + 0.5 [dead cells] 
635 nm/770 nm 0.5 [dead cells] + 0.5 [endospores]

Table 1: Source of Contributions to Each Fluorescence Channel.
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quartz flat
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excitation

Figure 5: Set-up for measurement of biofilms on contact lenses [27].

Figure 6: Prototype point-of-care disposable diagnostic for the detection 
of Staphylococcus aureus in fresh whole blood.
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(Alcon, Inc., Bösch 69, CH-6331, Hünenberg Switzerland) according 
the respective manufacturer’s instructions. As a control, lenses were 
also rubbed and rinsed with CVS saline for contact lenses. Lenses were 
then measured for the effectiveness of the procedure. As a control, both 
disinfected sample lenses and control lenses were placed in media for 
outgrowth and cells were counted by standard methods.

The background fluorescence of the contact lenses varied widely. 
P. aeruginosa formed biofilms on the contact lenses that varied in 
concentration from 106 - 1013 cells/mL and all lenses yielded no colony 
growth on culturing following cleaning and disinfection. Nevertheless, 
the intrinsic fluorescence protocol showed that a medically significant 
amount of bacteria, 105 - 109 cells/mL, on the treated lenses remained 
viable. Such viable-but-nonculturable cells are not detected by current 
methods for verification of contact lens decontamination. The cleaning/
disinfection procedures injure the cells to the point at which they 
cannot grow in microbial media used in standard protocols. However, 
it is known that such cells can be resuscitated via a variety of means to 
resume normal growth and virulence traits. Our result points to need 
for further refinement of contact lens decontamination protocols.

Detection of pathogens at ID50 levels in whole blood

We have also developed prototype disposable point-of-care 
diagnostics based on this technology. An example, presented below, is 
a diagnostic for the capture of Staphylococcus aureus from spiked fresh 
whole blood. In order to capture only S. aureus cells, we attached the 
anti-protein A peptide discussed above [24] to a quartz surface by a 
long (ca. 50 Å) tether. An experimental set-up is shown in Figure 6. 
A small amount (eg. 1 mL) of fresh whole blood was allowed to flow 
over the coated glass surface from a syringe. The limit of detection of S. 
aureus in whole blood using a very thin ligand-coated quartz cell (0.2 
mm) (Figure 7a) is compared with S. aureus cell capture from whole 
blood onto a peptide-coated quartz glass surface after a rinse step [24] 
to remove the blood (Figure 7b). Cell capture and rinsing improves the 
detection limit by ca. two orders of magnitude. The use of very thin cells 
should enable the detection of other pathogenic agents at ID50 levels in 
very small amounts of fresh whole blood. 
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